Suppr超能文献

种子序列的组成是 microRNA 靶向模式的主要决定因素。

Composition of seed sequence is a major determinant of microRNA targeting patterns.

机构信息

Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108, USA.

出版信息

Bioinformatics. 2014 May 15;30(10):1377-83. doi: 10.1093/bioinformatics/btu045. Epub 2014 Jan 26.

Abstract

MOTIVATION

MicroRNAs (miRNAs) are small non-coding RNAs that are extensively involved in gene expression regulation. One major roadblock in functional miRNA studies is the reliable prediction of genes targeted by miRNAs, as rules defining miRNA target recognition have not been well-established to date. Availability of high-throughput experimental data from a recent CLASH (cross linking, ligation and sequencing of hybrids) study has presented an unprecedented opportunity to characterize miRNA target recognition patterns, which may provide guidance for improved miRNA target prediction.

RESULTS

The CLASH data were analysed to identify distinctive sequence features that characterize canonical and non-canonical miRNA target types. Most miRNA targets were of non-canonical type, i.e. without involving perfect pairing to canonical miRNA seed region. Different miRNAs have distinct targeting patterns, and this miRNA-to-miRNA variability was associated with seed sequence composition. Specifically, seed-based canonical target recognition was dependent on the GC content of the miRNA seed. For miRNAs with low GC content of the seed region, non-canonical targeting was the dominant mechanism for target recognition. In contrast to canonical targeting, non-canonical targeting did not lead to significant target downregulation at either the RNA or protein level.

CONTACT

xwang@radonc.wustl.edu.

摘要

动机

微小 RNA(miRNA)是广泛参与基因表达调控的小非编码 RNA。功能 miRNA 研究的一个主要障碍是可靠地预测 miRNA 靶向的基因,因为迄今为止尚未建立定义 miRNA 靶识别规则。最近 CLASH(杂交体的交联、连接和测序)研究中的高通量实验数据的可用性提供了一个前所未有的机会来描述 miRNA 靶识别模式,这可能为改进 miRNA 靶预测提供指导。

结果

对 CLASH 数据进行了分析,以确定可区分特征,这些特征可表征规范和非规范 miRNA 靶类型。大多数 miRNA 靶标是非规范类型,即不涉及与规范 miRNA 种子区的完全配对。不同的 miRNA 具有不同的靶向模式,这种 miRNA 到 miRNA 的可变性与种子序列组成有关。具体而言,基于种子的规范靶标识别取决于 miRNA 种子的 GC 含量。对于种子区域 GC 含量低的 miRNA,非规范靶向是靶标识别的主要机制。与规范靶向不同,非规范靶向不会导致 RNA 或蛋白质水平的显著靶向下调。

联系方式

xwang@radonc.wustl.edu.

相似文献

6
Improving miRNA Target Prediction Using CLASH Data.利用CLASH数据改进微小RNA靶标预测
Methods Mol Biol. 2019;1970:75-83. doi: 10.1007/978-1-4939-9207-2_6.

引用本文的文献

1
Common and distinct circulating microRNAs in four neurovascular disorders.四种神经血管疾病中常见和独特的循环微小RNA
Biochem Biophys Rep. 2025 Aug 2;43:102189. doi: 10.1016/j.bbrep.2025.102189. eCollection 2025 Sep.
4
Characterizing the pan-cancer role of exosomal miRNAs in metastasis across cancers.表征外泌体微小RNA在癌症转移中的泛癌作用。
Comput Struct Biotechnol J. 2024 Dec 26;27:252-264. doi: 10.1016/j.csbj.2024.12.025. eCollection 2025.
6
7
Characterizing the role of exosomal miRNAs in metastasis.表征外泌体微小RNA在转移中的作用。
bioRxiv. 2024 Aug 21:2024.08.20.608894. doi: 10.1101/2024.08.20.608894.

本文引用的文献

1
CLIP-based prediction of mammalian microRNA binding sites.基于 CLIP 的哺乳动物 microRNA 结合位点预测。
Nucleic Acids Res. 2013 Aug;41(14):e138. doi: 10.1093/nar/gkt435. Epub 2013 May 22.
4
NCBI GEO: archive for functional genomics data sets--update.NCBI GEO:功能基因组学数据集存档 - 更新。
Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5. doi: 10.1093/nar/gks1193. Epub 2012 Nov 27.
5
Functional microRNA targets in protein coding sequences.蛋白质编码序列中的功能性 microRNA 靶标。
Bioinformatics. 2012 Mar 15;28(6):771-6. doi: 10.1093/bioinformatics/bts043. Epub 2012 Jan 27.
7
9
Entrez Gene: gene-centered information at NCBI.Entrez基因:美国国立医学图书馆国家生物技术信息中心的基因中心信息。
Nucleic Acids Res. 2011 Jan;39(Database issue):D52-7. doi: 10.1093/nar/gkq1237. Epub 2010 Nov 28.
10
miRBase: integrating microRNA annotation and deep-sequencing data.miRBase:整合微小RNA注释与深度测序数据
Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7. doi: 10.1093/nar/gkq1027. Epub 2010 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验