Suppr超能文献

潜在剖面分析与向精神病转化:亚组特征化以增强风险预测。

Latent Profile Analysis and Conversion to Psychosis: Characterizing Subgroups to Enhance Risk Prediction.

机构信息

Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC.

School of Psychology, Australian Catholic University, Melbourne, Australia.

出版信息

Schizophr Bull. 2018 Feb 15;44(2):286-296. doi: 10.1093/schbul/sbx080.

Abstract

BACKGROUND

Groups at clinical high risk (CHR) of developing psychosis are heterogeneous, composed of individuals with different clusters of symptoms. It is likely that there exist subgroups, each associated with different symptom constellations and probabilities of conversion.

METHOD

Present study used latent profile analysis (LPA) to ascertain subgroups in a combined sample of CHR (n = 171) and help-seeking controls (HSCs; n = 100; PREDICT study). Indicators in the LPA model included baseline Scale of Prodromal Symptoms (SOPS), Calgary Depression Scale for Schizophrenia (CDSS), and neurocognitive performance as measured by multiple instruments, including category instances (CAT). Subgroups were further characterized using covariates measuring demographic and clinical features.

RESULTS

Three classes emerged: class 1 (mild, transition rate 5.6%), lowest SOPS and depression scores, intact neurocognitive performance; class 2 (paranoid-affective, transition rate 14.2%), highest suspiciousness, mild negative symptoms, moderate depression; and class 3 (negative-neurocognitive, transition rate 29.3%), highest negative symptoms, neurocognitive impairment, social cognitive impairment. Classes 2 and 3 evidenced poor social functioning.

CONCLUSIONS

Results support a subgroup approach to research, assessment, and treatment of help-seeking individuals. Class 3 may be an early risk stage of developing schizophrenia.

摘要

背景

处于精神病发病高风险(CHR)的群体具有异质性,由具有不同症状集群的个体组成。很可能存在亚组,每个亚组都与不同的症状组合和转化概率相关。

方法

本研究使用潜在剖面分析(LPA)来确定 CHR(n=171)和寻求帮助的对照组(HSCs;n=100;PREDICT 研究)的合并样本中的亚组。LPA 模型中的指标包括基线前驱症状量表(SOPS)、精神分裂症的卡尔加里抑郁量表(CDSS)以及通过多种仪器测量的神经认知表现,包括类别实例(CAT)。使用衡量人口统计学和临床特征的协变量进一步描述亚组。

结果

出现了三个类别:类别 1(轻度,转化率为 5.6%),SOPS 和抑郁评分最低,神经认知表现完好;类别 2(偏执-情感,转化率为 14.2%),怀疑程度最高,轻度阴性症状,中度抑郁;类别 3(阴性-神经认知,转化率为 29.3%),阴性症状最高,神经认知障碍,社会认知障碍。类别 2 和 3 的社会功能不良。

结论

结果支持对寻求帮助的个体进行研究、评估和治疗的亚组方法。类别 3 可能是发展为精神分裂症的早期风险阶段。

相似文献

2
Neurocognitive profiles in the prodrome to psychosis in NAPLS-1.神经认知特征在 NAPLS-1 精神病前驱期。
Schizophr Res. 2019 Feb;204:311-319. doi: 10.1016/j.schres.2018.07.038. Epub 2018 Aug 2.

引用本文的文献

本文引用的文献

3
Single Sample Cross-Validation Indices for Covariance Structures.协方差结构的单样本交叉验证指标
Multivariate Behav Res. 1989 Oct 1;24(4):445-55. doi: 10.1207/s15327906mbr2404_4.
7
Preventing the onset of psychosis: not quite there yet.预防精神病的发作:尚未完全实现。
Schizophr Bull. 2015 Jan;41(1):28-9. doi: 10.1093/schbul/sbu161. Epub 2014 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验