Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.
Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
Antimicrob Agents Chemother. 2017 Dec 21;62(1). doi: 10.1128/AAC.01849-17. Print 2018 Jan.
Carbapenem-resistant (CRE) are rapidly spreading and taking a staggering toll on all health care systems, largely due to the dissemination of genes coding for potent carbapenemases. An important family of carbapenemases are the Zn(II)-dependent β-lactamases, known as metallo-β-lactamases (MBLs). Among them, the New Delhi metallo-β-lactamase (NDM) has experienced the fastest and widest geographical spread. While other clinically important MBLs are soluble periplasmic enzymes, NDMs are lipoproteins anchored to the outer membrane in Gram-negative bacteria. This unique cellular localization endows NDMs with enhanced stability upon the Zn(II) starvation elicited by the immune system response at the sites of infection. Since the first report of NDM-1, new allelic variants (16 in total) have been identified in clinical isolates differing by a limited number of substitutions. Here, we show that these variants have evolved by accumulating mutations that enhance their stability or the Zn(II) binding affinity , overriding the most common evolutionary pressure acting on catalytic efficiency. We identified the ubiquitous substitution M154L as responsible for improving the Zn(II) binding capabilities of the NDM variants. These results also reveal that Zn(II) deprivation imposes a strict constraint on the evolution of this MBL, overriding the most common pressures acting on catalytic performance, and shed light on possible inhibitory strategies.
碳青霉烯类耐药(CRE)正在迅速传播,并对所有医疗保健系统造成惊人的损失,主要是由于编码强力碳青霉烯酶的基因的传播。金属β-内酰胺酶(MBLs)是一类重要的碳青霉烯酶。其中,新德里金属β-内酰胺酶(NDM)的传播速度最快,地理范围最广。虽然其他临床上重要的 MBL 是可溶性周质内酶,但 NDM 是锚定在革兰氏阴性菌外膜上的脂蛋白。这种独特的细胞定位使 NDM 在感染部位免疫系统反应引起的 Zn(II)饥饿时具有更高的稳定性。自首次报道 NDM-1 以来,已在临床分离株中鉴定出 16 种新的等位基因变异体,这些变异体仅通过少数取代而有所不同。在这里,我们表明这些变体通过积累增强其稳定性或 Zn(II)结合亲和力的突变而进化,从而克服了对催化效率起作用的最常见进化压力。我们确定普遍存在的取代 M154L 是提高 NDM 变体的 Zn(II)结合能力的原因。这些结果还表明,Zn(II)剥夺对这种 MBL 的进化施加了严格的限制,克服了对催化性能起作用的最常见压力,并揭示了可能的抑制策略。