Yadav Pradeep Kumar, Rajvanshi Praveen Kumar, Rajasekharan Ram
Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Council of Scientific and Industrial Research, Mysore, Karnataka, 570020, India.
Academy of Scientific and Innovative Research, CSIR-CFTRI, Mysore, India.
Curr Genet. 2018 Apr;64(2):417-422. doi: 10.1007/s00294-017-0769-5. Epub 2017 Oct 17.
The precise and controlled regulation of gene expression at transcriptional and post-transcriptional levels is crucial for the eukaryotic cell survival and functions. In eukaryotes, more than 100 types of post-transcriptional RNA modifications have been identified. The N-methyladenosine (mA) modification in mRNA is among the most common post-transcriptional RNA modifications known in eukaryotic organisms, and the mA RNA modification can regulate gene expression. The role of yeast mA methyltransferase (Ime4) in meiosis, sporulation, triacylglycerol metabolism, vacuolar morphology, and mitochondrial functions has been reported. Stress triggers triacylglycerol accumulation as lipid droplets. Lipid droplets are physically connected to the different organelles such as endoplasmic reticulum, mitochondria, and peroxisomes. However, the physiological relevance of these physical interactions remains poorly understood. In yeast, peroxisome is the sole site of fatty acid β-oxidation. The metabolic status of the cell readily governs the number and physiological function of peroxisomes. Under low-glucose or stationary-phase conditions, peroxisome biogenesis and proliferation increase in the cells. Therefore, we hypothesized a possible role of Ime4 in the peroxisomal functions. There is no report on the role of Ime4 in peroxisomal biology. Here, we report that IME4 gene deletion causes peroxisomal dysfunction under stationary-phase conditions in Saccharomyces cerevisiae; besides, the ime4Δ cells showed a significant decrease in the expression of the key genes involved in peroxisomal β-oxidation compared to the wild-type cells. Therefore, identification and determination of the target genes of Ime4 that are directly involved in the peroxisomal biogenesis, morphology, and functions will pave the way to better understand the role of mA methylation in peroxisomal biology.
基因表达在转录和转录后水平上的精确且可控的调控对于真核细胞的存活和功能至关重要。在真核生物中,已鉴定出100多种转录后RNA修饰类型。mRNA中的N-甲基腺苷(mA)修饰是真核生物中已知的最常见的转录后RNA修饰之一,并且mA RNA修饰可以调控基因表达。酵母mA甲基转移酶(Ime4)在减数分裂、孢子形成、三酰甘油代谢、液泡形态和线粒体功能中的作用已有报道。应激会触发三酰甘油以脂滴的形式积累。脂滴与内质网、线粒体和过氧化物酶体等不同细胞器物理相连。然而,这些物理相互作用的生理相关性仍知之甚少。在酵母中,过氧化物酶体是脂肪酸β-氧化的唯一部位。细胞的代谢状态很容易控制过氧化物酶体的数量和生理功能。在低葡萄糖或稳定期条件下,细胞中的过氧化物酶体生物发生和增殖会增加。因此,我们推测Ime4在过氧化物酶体功能中可能发挥作用。关于Ime4在过氧化物酶体生物学中的作用尚无报道。在此,我们报告Ime4基因缺失会导致酿酒酵母在稳定期条件下过氧化物酶体功能障碍;此外,与野生型细胞相比,ime4Δ细胞中参与过氧化物酶体β-氧化的关键基因的表达显著降低。因此,鉴定和确定直接参与过氧化物酶体生物发生、形态和功能的Ime4的靶基因将为更好地理解mA甲基化在过氧化物酶体生物学中的作用铺平道路。