Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois , Chicago, Illinois 60607-7052, United States.
Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy , Irvine, California 92618-1908, United States.
ACS Appl Mater Interfaces. 2017 Nov 15;9(45):39283-39302. doi: 10.1021/acsami.7b15116. Epub 2017 Nov 1.
Despite the early promises of magnetic hyperthermia (MH) as a method for treating cancer, it has been stagnating in the past decade. Some of the reasons for the low effectiveness of superparamagnetic nanoparticles (SPIONs) in MH treatments include (a) low uptake in cancer cells; (b) generation of reactive oxygen species that cause harm to the healthy cells; (c) undeveloped targeting potential; and (d) lack of temperature sensitivity between cancer cells and healthy cells. Here we show that healthy cells, including human mesenchymal stem cells (MSCs) and primary mouse kidney and lung fibroblasts, display an unfavorably increased uptake of SPIONs compared to human brain cancer cells (E297 and U87) and mouse osteosarcomas cells (K7M2). Hydroxyapatite (HAP), the mineral component of our bones, may offer a solution to this unfavorably selective SPION delivery. HAP nanoparticles are commended not only for their exceptional biocompatibility but also for the convenience of their use as an intracellular delivery agent. Here we demonstrate that dispersing SPIONs in HAP using a wet synthesis method could increase the uptake in cancer cells and minimize the risk to healthy cells. Specifically, HAP/SPION nanocomposites retain the superparamagnetic nature of SPIONs, increase the uptake ratio between U87 human brain cancer cells and human MSCs versus their SPION counterparts, reduce migration in a primary brain cancer spheroid model compared to the control, reduce brain cancer cell viability compared to the treatment with SPIONs alone, and retain the viability of healthy human MSCs. A functional synergy between the two components of the nanocomposites was established; as a result, the cancer versus healthy cell (U87/MSC) selectivity in terms of both the uptake and the toxicity was higher for the composite than for SPIONs or HAP alone, allowing it to be damaging to cancer cells and harmless to the healthy ones. The analysis of actin cytoskeleton order at the microscale revealed that healthy MSCs and primary cancer cells after the uptake of SPIONs display reduced and increased anisotropy in their cytoskeletal arrangement, respectively. In contrast, the uptake of SPION/HAP nanocomposites increased the cytoskeletal anisotropy of both the healthy MSCs and the primary cancer cells. In spite of the moderate specific magnetization of HAP/SPION nanohybrids, reaching 15 emu/g for the 28.6 wt % SPION-containing composite, the cancer cell treatment in an alternating magnetic field resulted in an intense hyperthermia effect that increased the temperature by ca. 1 °C per minute of exposure and reduced the cell population treated for 30 min by more than 50%, while leaving the control populations unharmed. These findings on nanocomposites of HAP and SPIONs may open a new avenue for cancer therapies that utilize MH.
尽管磁热疗 (MH) 作为治疗癌症的一种方法在早期有很好的前景,但在过去十年中一直停滞不前。超顺磁纳米粒子 (SPIONs) 在 MH 治疗中效果不佳的部分原因包括:(a) 癌细胞的摄取率低;(b) 产生的活性氧会对健康细胞造成伤害;(c) 靶向潜力未开发;(d) 癌细胞与健康细胞之间缺乏温度敏感性。在这里,我们发现与人类脑癌细胞 (E297 和 U87) 和小鼠骨肉瘤细胞 (K7M2) 相比,健康细胞,包括人骨髓间充质干细胞 (MSCs) 和原代小鼠肾和肺成纤维细胞,对 SPIONs 的摄取呈不利增加。羟基磷灰石 (HAP) 是我们骨骼的矿物成分,可能为这种不利的 SPION 传递提供解决方案。HAP 纳米粒子不仅因其出色的生物相容性而受到赞誉,还因其作为细胞内递药载体的便利性而受到赞誉。在这里,我们证明了使用湿合成方法将 SPIONs 分散在 HAP 中可以增加癌细胞的摄取率,同时降低对健康细胞的风险。具体而言,HAP/SPION 纳米复合材料保留了 SPION 的超顺磁性,增加了 U87 人脑癌细胞与人类 MSCs 之间的摄取比率,与对照相比,减少了在原发性脑癌球体模型中的迁移,与单独用 SPIONs 处理相比,降低了脑癌细胞的活力,同时保持了健康人 MSCs 的活力。纳米复合材料的两种成分之间建立了功能协同作用;因此,与 SPIONs 或 HAP 单独治疗相比,纳米复合材料在摄取和毒性方面对癌症与健康细胞 (U87/MSC) 的选择性更高,使其能够杀伤癌细胞而对健康细胞无害。对微尺度下肌动蛋白细胞骨架有序性的分析表明,摄取 SPIONs 后,健康的 MSC 和原发性癌细胞的细胞骨架排列的各向异性分别降低和增加。相比之下,HAP/SPION 纳米复合材料的摄取增加了健康 MSC 和原发性癌细胞的细胞骨架各向异性。尽管 HAP/SPION 纳米杂化物的比磁化强度适中,对于含有 28.6wt%SPION 的复合材料达到 15emu/g,但在交变磁场中对癌细胞的处理会导致强烈的热疗效应,每暴露一分钟可使温度升高约 1°C,并且在 30 分钟的处理时间内,处理过的细胞群减少了 50%以上,而对照细胞群未受伤害。这些关于 HAP 和 SPION 纳米复合材料的发现可能为利用 MH 的癌症治疗开辟了新途径。
ACS Appl Mater Interfaces. 2017-11-1
Int J Nanomedicine. 2016-5-9
ACS Appl Mater Interfaces. 2017-1-5
Int J Mol Sci. 2022-9-26
Materials (Basel). 2022-8-24
EXCLI J. 2021-11-15
Adv Sci (Weinh). 2021-6
Adv Colloid Interface Sci. 2020-5
Found Sci. 2019-12
Int J Nanomedicine. 2017-3-14
ACS Appl Mater Interfaces. 2017-1-5
Sci Technol Adv Mater. 2015-4-28
ACS Appl Mater Interfaces. 2016-9-21
Environ Toxicol Pharmacol. 2016-7-11
Materials (Basel). 2016-6
ACS Appl Mater Interfaces. 2016-3
CA Cancer J Clin. 2016-1-7