Nordmann Gregory C, Hochstoeger Tobias, Keays David A
Research Institute of Molecular Pathology, Vienna, Austria.
PLoS Biol. 2017 Oct 23;15(10):e2003234. doi: 10.1371/journal.pbio.2003234. eCollection 2017 Oct.
Evolution has equipped life on our planet with an array of extraordinary senses, but perhaps the least understood is magnetoreception. Despite compelling behavioral evidence that this sense exists, the cells, molecules, and mechanisms that mediate sensory transduction remain unknown. So how could animals detect magnetic fields? We introduce and discuss 3 concepts that attempt to address this question: (1) a mechanically sensitive magnetite-based magnetoreceptor, (2) a light-sensitive chemical-based mechanism, and (3) electromagnetic induction within accessory structures. In discussing the merits and issues with each of these ideas, we draw on existing precepts in sensory biology. We argue that solving this scientific mystery will require the development of new genetic tools in magnetosensitive species, coupled with an interdisciplinary approach that bridges physics, behavior, anatomy, physiology, molecular biology, and genetics.
进化为我们星球上的生命赋予了一系列非凡的感官,但也许最不为人所理解的就是磁感受。尽管有令人信服的行为证据表明这种感官存在,但介导感觉转导的细胞、分子和机制仍然未知。那么动物是如何检测磁场的呢?我们介绍并讨论了3个试图解决这个问题的概念:(1)一种基于机械敏感磁铁矿的磁感受器,(2)一种基于光敏感化学物质的机制,以及(3)附属结构内的电磁感应。在讨论这些观点各自的优点和问题时,我们借鉴了感觉生物学中的现有原则。我们认为,要解开这个科学谜团,需要在磁敏感物种中开发新的遗传工具,并采用一种跨学科方法,将物理学、行为学、解剖学、生理学、分子生物学和遗传学联系起来。