Suppr超能文献

使用形态成分分析在光学相干断层扫描B扫描中自动检测高反射灶

Automatic detection of Hyperreflective Foci in optical coherence tomography B-scans using Morphological Component Analysis.

作者信息

Mokhtari Marzieh, Ghasemi Kamasi Zeinab, Rabbani Hossein

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1497-1500. doi: 10.1109/EMBC.2017.8037119.

Abstract

Hyperreflective Foci (HF) is one of the most common complications distributed in cross-sectional images of patients with Diabetic Macular Edema (DME). Scanning Laser Ophthalmoscope (SLO) images usually consists of several B-scans that represent a cross-sectional reconstruction of a plane through the anterior or posterior regions of retina. In each B-scan, HFs are geometrically distinct constituents in different retinal layers. Since the intensity levels of HFs and many other subjects in B-scans are the same, in this paper we try to separate HFs from other objects by detection of the point and curve singularities in each B-scan. The decomposition algorithm presented in this paper is based on sparse image representation of B-scans using Morphological Component Analysis (MCA) technique. By using curvelet transform and Daubechies wavelet basis, two different over-complete dictionaries are constructed which represent two various aspects of B-scans. The HFs are more distinguished in reconstructed image with wavelet dictionary and other objects are mostly detectable by curvelet dictionary. So, HFs can be detected by applying an optimum threshold criterion on reconstructed image by wavelet atoms. Finally, the false positive points are reduced by removing the candidate points in RNFL and RPE layers, which are automatically segmented based on ridgelet transform. Our simulation results on 1924 HFs show that sensitivity and specificity for HF detection is 91.0% and 100%, respectively.

摘要

高反射灶(HF)是糖尿病性黄斑水肿(DME)患者横断面图像中最常见的并发症之一。扫描激光检眼镜(SLO)图像通常由几个B扫描组成,这些B扫描代表通过视网膜前部或后部区域的平面的横断面重建。在每个B扫描中,高反射灶是不同视网膜层中几何上不同的成分。由于B扫描中高反射灶和许多其他物体的强度水平相同,在本文中,我们试图通过检测每个B扫描中的点和曲线奇点来将高反射灶与其他物体分离。本文提出的分解算法基于使用形态成分分析(MCA)技术的B扫描的稀疏图像表示。通过使用曲波变换和Daubechies小波基,构建了两个不同的过完备字典,它们代表了B扫描的两个不同方面。高反射灶在小波字典重建图像中更易区分,而其他物体大多可由曲波字典检测到。因此,可以通过对小波原子重建图像应用最佳阈值准则来检测高反射灶。最后,通过去除基于脊波变换自动分割的视网膜神经纤维层(RNFL)和视网膜色素上皮(RPE)层中的候选点来减少假阳性点。我们对1924个高反射灶的模拟结果表明高反射灶检测的灵敏度和特异性分别为91.0%和100%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验