Suppr超能文献

基于范德华异质结构的电可调人工分子

Electrotunable artificial molecules based on van der Waals heterostructures.

作者信息

Zhang Zhuo-Zhi, Song Xiang-Xiang, Luo Gang, Deng Guang-Wei, Mosallanejad Vahid, Taniguchi Takashi, Watanabe Kenji, Li Hai-Ou, Cao Gang, Guo Guang-Can, Nori Franco, Guo Guo-Ping

机构信息

CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China.

Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

出版信息

Sci Adv. 2017 Oct 20;3(10):e1701699. doi: 10.1126/sciadv.1701699. eCollection 2017 Oct.

Abstract

Quantum confinement has made it possible to detect and manipulate single-electron charge and spin states. The recent focus on two-dimensional (2D) materials has attracted significant interests on possible applications to quantum devices, including detecting and manipulating either single-electron charging behavior or spin and valley degrees of freedom. However, the most popular model systems, consisting of tunable double-quantum-dot molecules, are still extremely difficult to realize in these materials. We show that an artificial molecule can be reversibly formed in atomically thin MoS sandwiched in hexagonal boron nitride, with each artificial atom controlled separately by electrostatic gating. The extracted values for coupling energies at different regimes indicate a single-electron transport behavior, with the coupling strength between the quantum dots tuned monotonically. Moreover, in the low-density regime, we observe a decrease of the conductance with magnetic field, suggesting the observation of Coulomb blockade weak anti-localization. Our experiments demonstrate for the first time the realization of an artificial quantum-dot molecule in a gated MoS van der Waals heterostructure, which could be used to investigate spin-valley physics. The compatibility with large-scale production, gate controllability, electron-hole bipolarity, and new quantum degrees of freedom in the family of 2D materials opens new possibilities for quantum electronics and its applications.

摘要

量子限制使得检测和操纵单电子电荷及自旋态成为可能。近期对二维(2D)材料的关注引发了人们对其在量子器件中可能应用的浓厚兴趣,包括检测和操纵单电子充电行为或自旋与能谷自由度。然而,由可调谐双量子点分子构成的最流行模型系统在这些材料中仍极难实现。我们展示了在夹于六方氮化硼中的原子级薄的二硫化钼中可以可逆地形成一个人工分子,其中每个人工原子通过静电门控单独控制。在不同区域提取的耦合能值表明了单电子输运行为,量子点之间的耦合强度可单调调谐。此外,在低密度区域,我们观察到电导随磁场减小,这表明观察到了库仑阻塞弱反局域化。我们的实验首次证明了在门控二硫化钼范德华异质结构中实现了人工量子点分子,这可用于研究自旋能谷物理。与大规模生产的兼容性、门控可控性、电子 - 空穴双极性以及二维材料家族中的新量子自由度为量子电子学及其应用开辟了新的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0d1/5650488/df52a32bcfad/1701699-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验