Suppr超能文献

可穿戴心电图设备中的心律失常评估。

Arrhythmia Evaluation in Wearable ECG Devices.

机构信息

Department of Mechanical Engineering and Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan, Chung-Li 32003, Taiwan.

Healthcare and Beauty RD Center, Kinpo Electronics, Inc., New Taipei City 222, Taiwan.

出版信息

Sensors (Basel). 2017 Oct 25;17(11):2445. doi: 10.3390/s17112445.

Abstract

This study evaluates four databases from PhysioNet: The American Heart Association database (AHADB), Creighton University Ventricular Tachyarrhythmia database (CUDB), MIT-BIH Arrhythmia database (MITDB), and MIT-BIH Noise Stress Test database (NSTDB). The ANSI/AAMI EC57:2012 is used for the evaluation of the algorithms for the supraventricular ectopic beat (SVEB), ventricular ectopic beat (VEB), atrial fibrillation (AF), and ventricular fibrillation (VF) via the evaluation of the sensitivity, positive predictivity and false positive rate. Sample entropy, fast Fourier transform (FFT), and multilayer perceptron neural network with backpropagation training algorithm are selected for the integrated detection algorithms. For this study, the result for SVEB has some improvements compared to a previous study that also utilized ANSI/AAMI EC57. In further, VEB sensitivity and positive predictivity gross evaluations have greater than 80%, except for the positive predictivity of the NSTDB database. For AF gross evaluation of MITDB database, the results show very good classification, excluding the episode sensitivity. In advanced, for VF gross evaluation, the episode sensitivity and positive predictivity for the AHADB, MITDB, and CUDB, have greater than 80%, except for MITDB episode positive predictivity, which is 75%. The achieved results show that the proposed integrated SVEB, VEB, AF, and VF detection algorithm has an accurate classification according to ANSI/AAMI EC57:2012. In conclusion, the proposed integrated detection algorithm can achieve good accuracy in comparison with other previous studies. Furthermore, more advanced algorithms and hardware devices should be performed in future for arrhythmia detection and evaluation.

摘要

本研究评估了 PhysioNet 中的四个数据库:美国心脏协会数据库 (AHADB)、克赖顿大学室性心律失常数据库 (CUDB)、麻省理工学院-贝思以色列医院心律失常数据库 (MITDB) 和麻省理工学院-贝思以色列医院噪声压力测试数据库 (NSTDB)。ANSI/AAMI EC57:2012 用于评估通过评估敏感性、阳性预测值和假阳性率对室上性早搏 (SVEB)、室性早搏 (VEB)、心房颤动 (AF) 和心室颤动 (VF) 的算法进行评估。样本熵、快速傅里叶变换 (FFT) 和具有反向传播训练算法的多层感知器神经网络被选为集成检测算法。对于这项研究,与之前也利用 ANSI/AAMI EC57 的研究相比,SVEB 的结果有所改进。此外,除了 NSTDB 数据库的阳性预测值外,VEB 的敏感性和阳性预测值总评均大于 80%。对于 MITDB 数据库的 AF 总评,结果表明分类非常好,除了发作敏感性。此外,对于 VF 总评,AHADB、MITDB 和 CUDB 的发作敏感性和阳性预测值均大于 80%,除了 MITDB 发作阳性预测值为 75%。所取得的结果表明,所提出的集成 SVEB、VEB、AF 和 VF 检测算法根据 ANSI/AAMI EC57:2012 具有准确的分类。总之,与其他先前的研究相比,所提出的集成检测算法可以实现良好的准确性。此外,未来应进行更先进的算法和硬件设备,以进行心律失常检测和评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aaf/5712868/b62e86a89a5e/sensors-17-02445-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验