Suppr超能文献

结合本体和开放标准,为个人和电子健康记录的互操作性推导中间层信息模型。

Combining Ontologies and Open Standards to Derive a Middle Layer Information Model for Interoperability of Personal and Electronic Health Records.

机构信息

Health Informatics Research Group, Department of Computer Science, City University of London, EC1V 0HB, London, UK.

出版信息

J Med Syst. 2017 Oct 28;41(12):195. doi: 10.1007/s10916-017-0838-9.

Abstract

The aim of our study was to enable better interoperability between Personal Health Record (PHR) and Electronic Health Record (EHR) systems and vice versa. A multi-layer architectural model that resides between a PHR and EHR system has been developed. The model consists of an ontology-driven information model and a set of transformation rules that work in conjunction to process data exported from a PHR or EHR system and prepare it accordingly for the receiving system. The model was evaluated by executing a set of case study scenarios containing data from both a PHR and an EHR system. This allowed various challenges to emerge and revealed gaps in current standards in use. The proposed information model offers a number of advantages. Altering only the information model can incorporate modifications to either a PHR or EHR system. The model uses classes and attributes to define how data is captured which allows greater flexibility in how data can be manipulated by receiving systems.

摘要

我们的研究目的是实现个人健康记录(PHR)和电子健康记录(EHR)系统之间更好的互操作性,反之亦然。为此开发了一种位于 PHR 和 EHR 系统之间的多层架构模型。该模型由一个本体驱动的信息模型和一组转换规则组成,它们协同工作,处理从 PHR 或 EHR 系统导出的数据,并对其进行相应的准备,以便接收系统使用。通过执行一组包含来自 PHR 和 EHR 系统的数据的案例研究场景对该模型进行了评估。这使得各种挑战浮出水面,并揭示了当前使用的标准中的差距。所提出的信息模型具有许多优势。仅更改信息模型就可以将修改合并到 PHR 或 EHR 系统中。该模型使用类和属性来定义如何捕获数据,这允许接收系统以更大的灵活性处理数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验