Suppr超能文献

朝向药物不良反应的多模态信号检测。

Toward multimodal signal detection of adverse drug reactions.

机构信息

Oracle Health Sciences, Bedford, MA, United States.

Oracle Health Sciences, Bedford, MA, United States.

出版信息

J Biomed Inform. 2017 Dec;76:41-49. doi: 10.1016/j.jbi.2017.10.013. Epub 2017 Nov 1.

Abstract

OBJECTIVE

Improving mechanisms to detect adverse drug reactions (ADRs) is key to strengthening post-marketing drug safety surveillance. Signal detection is presently unimodal, relying on a single information source. Multimodal signal detection is based on jointly analyzing multiple information sources. Building on, and expanding the work done in prior studies, the aim of the article is to further research on multimodal signal detection, explore its potential benefits, and propose methods for its construction and evaluation.

MATERIAL AND METHODS

Four data sources are investigated; FDA's adverse event reporting system, insurance claims, the MEDLINE citation database, and the logs of major Web search engines. Published methods are used to generate and combine signals from each data source. Two distinct reference benchmarks corresponding to well-established and recently labeled ADRs respectively are used to evaluate the performance of multimodal signal detection in terms of area under the ROC curve (AUC) and lead-time-to-detection, with the latter relative to labeling revision dates.

RESULTS

Limited to our reference benchmarks, multimodal signal detection provides AUC improvements ranging from 0.04 to 0.09 based on a widely used evaluation benchmark, and a comparative added lead-time of 7-22 months relative to labeling revision dates from a time-indexed benchmark.

CONCLUSIONS

The results support the notion that utilizing and jointly analyzing multiple data sources may lead to improved signal detection. Given certain data and benchmark limitations, the early stage of development, and the complexity of ADRs, it is currently not possible to make definitive statements about the ultimate utility of the concept. Continued development of multimodal signal detection requires a deeper understanding the data sources used, additional benchmarks, and further research on methods to generate and synthesize signals.

摘要

目的

改善不良反应(ADR)检测机制是加强上市后药物安全监测的关键。信号检测目前是单模态的,依赖于单一信息源。多模态信号检测基于联合分析多个信息源。本文旨在进一步研究多模态信号检测,探索其潜在效益,并提出构建和评估方法,基于并扩展之前研究中的工作。

材料与方法

研究了四个数据源;FDA 的不良事件报告系统、保险索赔、MEDLINE 引文数据库和主要搜索引擎的日志。使用已发表的方法从每个数据源生成和组合信号。使用两个分别对应于已建立和最近标记的 ADR 的独特参考基准来评估多模态信号检测的性能,根据 ROC 曲线下面积(AUC)和检测提前时间进行评估,后者相对于标签修订日期。

结果

限于我们的参考基准,多模态信号检测在 AUC 方面提供了 0.04 到 0.09 的改进,根据广泛使用的评估基准,以及相对于标签修订日期的 7-22 个月的比较提前时间。

结论

结果支持利用和联合分析多个数据源可能会导致信号检测得到改善的观点。考虑到某些数据和基准的限制、开发的早期阶段以及 ADR 的复杂性,目前无法对该概念的最终效用做出明确的陈述。多模态信号检测的持续发展需要更深入地了解所使用的数据源、额外的基准以及生成和合成信号的方法研究。

相似文献

1
Toward multimodal signal detection of adverse drug reactions.朝向药物不良反应的多模态信号检测。
J Biomed Inform. 2017 Dec;76:41-49. doi: 10.1016/j.jbi.2017.10.013. Epub 2017 Nov 1.
5
Supervised signal detection for adverse drug reactions in medication dispensing data.基于配药数据的药物不良反应的有监督信号检测。
Comput Methods Programs Biomed. 2018 Jul;161:25-38. doi: 10.1016/j.cmpb.2018.03.021. Epub 2018 Apr 14.
6
Early identification of adverse drug reactions from search log data.从搜索日志数据中早期识别药物不良反应
J Biomed Inform. 2016 Feb;59:42-8. doi: 10.1016/j.jbi.2015.11.005. Epub 2015 Nov 29.

引用本文的文献

本文引用的文献

2
Early identification of adverse drug reactions from search log data.从搜索日志数据中早期识别药物不良反应
J Biomed Inform. 2016 Feb;59:42-8. doi: 10.1016/j.jbi.2015.11.005. Epub 2015 Nov 29.
3
Unmet needs: Research helps regulators do their jobs.未满足的需求:研究有助于监管机构履行职责。
Sci Transl Med. 2015 Nov 25;7(315):315ps22. doi: 10.1126/scitranslmed.aac4369.
5
FDA as a catalyst for translation.美国食品药品监督管理局作为转化的催化剂。
Sci Transl Med. 2015 Jul 15;7(296):296ed9. doi: 10.1126/scitranslmed.aab2404.
7
Utilizing social media data for pharmacovigilance: A review.利用社交媒体数据进行药物警戒:综述
J Biomed Inform. 2015 Apr;54:202-12. doi: 10.1016/j.jbi.2015.02.004. Epub 2015 Feb 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验