Oracle Health Sciences, Bedford, MA, United States.
Oracle Health Sciences, Bedford, MA, United States.
J Biomed Inform. 2017 Dec;76:41-49. doi: 10.1016/j.jbi.2017.10.013. Epub 2017 Nov 1.
Improving mechanisms to detect adverse drug reactions (ADRs) is key to strengthening post-marketing drug safety surveillance. Signal detection is presently unimodal, relying on a single information source. Multimodal signal detection is based on jointly analyzing multiple information sources. Building on, and expanding the work done in prior studies, the aim of the article is to further research on multimodal signal detection, explore its potential benefits, and propose methods for its construction and evaluation.
Four data sources are investigated; FDA's adverse event reporting system, insurance claims, the MEDLINE citation database, and the logs of major Web search engines. Published methods are used to generate and combine signals from each data source. Two distinct reference benchmarks corresponding to well-established and recently labeled ADRs respectively are used to evaluate the performance of multimodal signal detection in terms of area under the ROC curve (AUC) and lead-time-to-detection, with the latter relative to labeling revision dates.
Limited to our reference benchmarks, multimodal signal detection provides AUC improvements ranging from 0.04 to 0.09 based on a widely used evaluation benchmark, and a comparative added lead-time of 7-22 months relative to labeling revision dates from a time-indexed benchmark.
The results support the notion that utilizing and jointly analyzing multiple data sources may lead to improved signal detection. Given certain data and benchmark limitations, the early stage of development, and the complexity of ADRs, it is currently not possible to make definitive statements about the ultimate utility of the concept. Continued development of multimodal signal detection requires a deeper understanding the data sources used, additional benchmarks, and further research on methods to generate and synthesize signals.
改善不良反应(ADR)检测机制是加强上市后药物安全监测的关键。信号检测目前是单模态的,依赖于单一信息源。多模态信号检测基于联合分析多个信息源。本文旨在进一步研究多模态信号检测,探索其潜在效益,并提出构建和评估方法,基于并扩展之前研究中的工作。
研究了四个数据源;FDA 的不良事件报告系统、保险索赔、MEDLINE 引文数据库和主要搜索引擎的日志。使用已发表的方法从每个数据源生成和组合信号。使用两个分别对应于已建立和最近标记的 ADR 的独特参考基准来评估多模态信号检测的性能,根据 ROC 曲线下面积(AUC)和检测提前时间进行评估,后者相对于标签修订日期。
限于我们的参考基准,多模态信号检测在 AUC 方面提供了 0.04 到 0.09 的改进,根据广泛使用的评估基准,以及相对于标签修订日期的 7-22 个月的比较提前时间。
结果支持利用和联合分析多个数据源可能会导致信号检测得到改善的观点。考虑到某些数据和基准的限制、开发的早期阶段以及 ADR 的复杂性,目前无法对该概念的最终效用做出明确的陈述。多模态信号检测的持续发展需要更深入地了解所使用的数据源、额外的基准以及生成和合成信号的方法研究。