Suppr超能文献

作为抗癌剂的茄尼醇与粘着斑激酶(FAK)对接的分子动力学模拟分析

Molecular dynamics simulation analysis of Focal Adhesive Kinase (FAK) docked with solanesol as an anti-cancer agent.

作者信息

Daneial Betty, Joseph Jacob Paul Vazhappilly, Ramakrishna Guruprasad

机构信息

Botany Department, St. Joseph's College, Bangalore 560027, Karnataka, India.

Durga Femto Technologies and Research, Bangalore 560018, Karnataka, India.

出版信息

Bioinformation. 2017 Sep 30;13(9):274-283. doi: 10.6026/97320630013274. eCollection 2017.

Abstract

Focal adhesion kinase (FAK) plays a primary role in regulating the activity of many signaling molecules. Increased FAK expression has been associated in a series of cellular processes like cell migration and survival. FAK inhibition by an anti cancer agent is critical. Therefore, it is of interest to identify, modify, design, improve and develop molecules to inhibit FAK. Solanesol is known to have inhibitory activity towards FAK. However, the molecular principles of its binding with FAK is unknown. Solanesol is a highly flexible ligand (25 rotatable bonds). Hence, ligand-protein docking was completed using AutoDock with a modified contact based scoring function. The FAK-solanesol complex model was further energy minimized and simulated in GROMOS96 (53a6) force field followed by post simulation analysis such as Root mean square deviation (RMSD), root mean square fluctuations (RMSF) and solvent accessible surface area (SASA) calculations to explain solanesol-FAK binding.

摘要

粘着斑激酶(FAK)在调节许多信号分子的活性中起主要作用。FAK表达增加与一系列细胞过程有关,如细胞迁移和存活。抗癌药物对FAK的抑制作用至关重要。因此,识别、修饰、设计、改进和开发抑制FAK的分子具有重要意义。已知茄尼醇对FAK具有抑制活性。然而,其与FAK结合的分子机制尚不清楚。茄尼醇是一种高度灵活的配体(有25个可旋转键)。因此,使用具有改进的基于接触的评分函数的AutoDock完成了配体-蛋白质对接。FAK-茄尼醇复合物模型在GROMOS96(53a6)力场中进一步进行能量最小化和模拟,随后进行模拟后分析,如均方根偏差(RMSD)、均方根波动(RMSF)和溶剂可及表面积(SASA)计算,以解释茄尼醇与FAK的结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/208e/5651220/9f9b495d77af/97320630013274F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验