Fosses Aurélie, Maté Maria, Franche Nathalie, Liu Nian, Denis Yann, Borne Romain, de Philip Pascale, Fierobe Henri-Pierre, Perret Stéphanie
Aix Marseille Univ, CNRS, LCB, Marseille, France.
Aix Marseille Univ, CNRS, AFMB, Marseille, France.
Biotechnol Biofuels. 2017 Oct 30;10:250. doi: 10.1186/s13068-017-0933-7. eCollection 2017.
Like a number of anaerobic and cellulolytic Gram-positive bacteria, the model microorganism produces extracellular multi-enzymatic complexes called cellulosomes, which efficiently degrade the crystalline cellulose. Action of the complexes on cellulose releases cellobiose and longer cellodextrins but to date, little is known about the transport and utilization of the produced cellodextrins in the bacterium. A better understanding of the uptake systems and fermentation of sugars derived from cellulose could have a major impact in the field of biofuels production.
We characterized a putative ABC transporter devoted to cellodextrins uptake, and a cellobiose phosphorylase (CbpA) in . The genes encoding the components of the ABC transporter (a binding protein CuaA and two integral membrane proteins) and CbpA are expressed as a polycistronic transcriptional unit induced in the presence of cellobiose. Upstream, another polycistronic transcriptional unit encodes a two-component system (sensor and regulator), and a second binding protein CuaD, and is constitutively expressed. The products might form a three-component system inducing the expression of and since we showed that CuaR is able to recognize the region upstream of . Biochemical analysis showed that CbpA is a strict cellobiose phosphorylase inactive on longer cellodextrins; CuaA binds to all cellodextrins (G2-G5) tested, whereas CuaD is specific to cellobiose and presents a higher affinity to this sugar. This results are in agreement with their function in transport and signalization, respectively. Characterization of a mutant, and its derivatives, indicated that the ABC transporter and CbpA are essential for growth on cellobiose and cellulose.
For the first time in a Gram-positive strain, we identified a three-component system and a conjugated ABC transporter/cellobiose phosphorylase system which was shown to be essential for the growth of the model cellulolytic bacterium on cellobiose and cellulose. This efficient and energy-saving system of transport and phosphorolysis appears to be the major cellobiose utilization pathway in , and seems well adapted to cellulolytic life-style strain. It represents a new way to enable engineered strains to utilize cellodextrins for the production of biofuels or chemicals of interest from cellulose.
与许多厌氧和纤维素分解革兰氏阳性细菌一样,该模式微生物会产生称为纤维小体的细胞外多酶复合物,其能有效降解结晶纤维素。这些复合物作用于纤维素会释放出纤维二糖和更长的纤维糊精,但迄今为止,对于细菌中所产生的纤维糊精的转运和利用情况知之甚少。更好地了解源自纤维素的糖类的摄取系统和发酵过程可能会对生物燃料生产领域产生重大影响。
我们对一种推测用于摄取纤维糊精的ABC转运蛋白以及一种纤维二糖磷酸化酶(CbpA)进行了表征。编码ABC转运蛋白组分(一种结合蛋白CuaA和两种整合膜蛋白)和CbpA的基因作为一个多顺反子转录单元进行表达,该转录单元在纤维二糖存在时被诱导。在其上游,另一个多顺反子转录单元编码一个双组分系统(传感器和调节子)以及第二个结合蛋白CuaD,并且该转录单元组成性表达。这些产物可能形成一个三组分系统来诱导 和 的表达,因为我们表明CuaR能够识别 的上游区域。生化分析表明,CbpA是一种严格的纤维二糖磷酸化酶,对更长的纤维糊精无活性;CuaA与所有测试的纤维糊精(G2 - G5)结合,而CuaD对纤维二糖具有特异性,并且对这种糖具有更高的亲和力。这些结果分别与它们在转运和信号传导中的功能一致。对一个 突变体及其衍生物的表征表明,ABC转运蛋白和CbpA对于在纤维二糖和纤维素上生长至关重要。
在革兰氏阳性菌株中,我们首次鉴定出一个三组分系统以及一个结合的ABC转运蛋白/纤维二糖磷酸化酶系统,该系统对于模式纤维素分解细菌在纤维二糖和纤维素上的生长至关重要。这种高效且节能的转运和磷酸解系统似乎是 中主要的纤维二糖利用途径,并且似乎很好地适应了纤维素分解生活方式的菌株。它代表了一种使工程菌株能够利用纤维糊精从纤维素生产生物燃料或感兴趣的化学品的新方法。