Suppr超能文献

美国本土畜牧业甲烷排放的自下而上网格化清单中的差异和不确定性。

Discrepancies and Uncertainties in Bottom-up Gridded Inventories of Livestock Methane Emissions for the Contiguous United States.

机构信息

ExxonMobil Research and Engineering Company, Annandale, New Jersey 08801, United States.

出版信息

Environ Sci Technol. 2017 Dec 5;51(23):13668-13677. doi: 10.1021/acs.est.7b03332. Epub 2017 Nov 22.

Abstract

In this analysis we used a spatially explicit, simplified bottom-up approach, based on animal inventories, feed dry matter intake, and feed intake-based emission factors to estimate county-level enteric methane emissions for cattle and manure methane emissions for cattle, swine, and poultry for the contiguous United States. Overall, this analysis yielded total livestock methane emissions (8916 Gg/yr; lower and upper 95% confidence bounds of ±19.3%) for 2012 (last census of agriculture) that are comparable to the current USEPA estimates for 2012 and to estimates from the global gridded Emission Database for Global Atmospheric Research (EDGAR) inventory. However, the spatial distribution of emissions developed in this analysis differed significantly from that of EDGAR and a recent gridded inventory based on USEPA. Combined enteric and manure methane emissions from livestock in Texas and California (highest contributors to the national total) in this study were 36% lesser and 100% greater, respectively, than estimates by EDGAR. The spatial distribution of emissions in gridded inventories (e.g., EDGAR) likely strongly impacts the conclusions of top-down approaches that use them, especially in the source attribution of resulting (posterior) emissions, and hence conclusions from such studies should be interpreted with caution.

摘要

在本分析中,我们使用了一种基于动物清单、饲料干物质摄入量和基于饲料摄入量的排放因子的空间明确、简化的自下而上方法,来估算美国大陆的县一级牛的肠道甲烷排放和牛、猪和家禽的粪便甲烷排放。总体而言,本分析得出了 2012 年(上一次农业普查)的牲畜甲烷总排放量(8916Gg/yr;95%置信区间下限和上限分别为±19.3%),与当前美国环保局对 2012 年的估计以及全球大气研究排放数据库(EDGAR)清单的估计相当。然而,本分析中开发的排放空间分布与 EDGAR 和最近基于美国环保局的网格化清单有显著差异。本研究中,德克萨斯州和加利福尼亚州(对全国总量贡献最大的两个州)的牲畜肠道和粪便甲烷总排放量分别比 EDGAR 的估计低 36%和高 100%。网格化清单中的排放空间分布(例如,EDGAR)可能会强烈影响使用它们的自上而下方法的结论,尤其是在归因于排放的结论中,因此,应谨慎解释此类研究的结论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验