Nakamura Tomohiro, Lipton Stuart A
Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA.
Neuroscience Translational Center, and Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA.
Trends Endocrinol Metab. 2017 Dec;28(12):879-892. doi: 10.1016/j.tem.2017.10.004. Epub 2017 Oct 30.
The prevalence of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), is currently a major public health concern due to the lack of efficient disease-modifying therapeutic options. Recent evidence suggests that mitochondrial dysfunction and nitrosative/oxidative stress are key common mediators of pathogenesis. In this review, we highlight molecular mechanisms linking NO-dependent post-translational modifications, such as cysteine S-nitrosylation and tyrosine nitration, to abnormal mitochondrial metabolism. We further discuss the hypothesis that pathological levels of NO compromise brain energy metabolism via aberrant S-nitrosylation of key enzymes in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, contributing to neurodegenerative conditions. A better understanding of these pathophysiological events may provide a potential pathway for designing novel therapeutics to ameliorate neurodegenerative disorders.
包括阿尔茨海默病(AD)和帕金森病(PD)在内的神经退行性疾病的患病率,目前是一个主要的公共卫生问题,因为缺乏有效的疾病修饰治疗选择。最近的证据表明,线粒体功能障碍和亚硝化/氧化应激是发病机制的关键共同介质。在这篇综述中,我们强调了将依赖一氧化氮(NO)的翻译后修饰,如半胱氨酸S-亚硝基化和酪氨酸硝化,与异常线粒体代谢联系起来的分子机制。我们进一步讨论了这样一种假说,即病理性水平的NO通过三羧酸(TCA)循环和氧化磷酸化中关键酶的异常S-亚硝基化损害脑能量代谢,从而导致神经退行性疾病。对这些病理生理事件的更好理解可能为设计新型治疗方法以改善神经退行性疾病提供一条潜在途径。