Departments of Molecular Medicine and Neuroscience and Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA; Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA 92121, USA; Neuroscience and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
Cell Rep. 2017 Nov 21;21(8):2171-2182. doi: 10.1016/j.celrep.2017.10.068.
Mutations in PARK6 (PINK1) and PARK2 (Parkin) are linked to rare familial cases of Parkinson's disease (PD). Mutations in these genes result in pathological dysregulation of mitophagy, contributing to neurodegeneration. Here, we report that environmental factors causing a specific posttranslational modification on PINK1 can mimic these genetic mutations. We describe a molecular mechanism for impairment of mitophagy via formation of S-nitrosylated PINK1 (SNO-PINK1). Mitochondrial insults simulating age- or environmental-related stress lead to increased SNO-PINK1, inhibiting its kinase activity. SNO-PINK1 decreases Parkin translocation to mitochondrial membranes, disrupting mitophagy in cell lines and human-iPSC-derived neurons. We find levels of SNO-PINK1 in brains of α-synuclein transgenic PD mice similar to those in cell-based models, indicating the pathophysiological relevance of our findings. Importantly, SNO-PINK1-mediated deficits in mitophagy contribute to neuronal cell death. These results reveal a direct molecular link between nitrosative stress, SNO-PINK1 formation, and mitophagic dysfunction that contributes to the pathogenesis of PD.
PARK6 (PINK1) 和 PARK2 (Parkin) 的突变与罕见的家族性帕金森病 (PD) 有关。这些基因的突变导致自噬病理性失调,导致神经退行性变。在这里,我们报告说,导致 PINK1 发生特定翻译后修饰的环境因素可以模拟这些基因突变。我们描述了一种通过形成 S-亚硝基化 PINK1 (SNO-PINK1) 导致线粒体自噬受损的分子机制。模拟与年龄或环境相关的应激的线粒体损伤会导致 SNO-PINK1 增加,从而抑制其激酶活性。SNO-PINK1 减少 Parkin 向线粒体膜的易位,破坏细胞系和人诱导多能干细胞衍生神经元中的线粒体自噬。我们发现,α-突触核蛋白转基因 PD 小鼠脑中的 SNO-PINK1 水平与细胞模型中的水平相似,这表明了我们研究结果的病理生理学相关性。重要的是,SNO-PINK1 介导的线粒体自噬缺陷导致神经元细胞死亡。这些结果揭示了硝化应激、SNO-PINK1 形成和线粒体自噬功能障碍之间的直接分子联系,这有助于 PD 的发病机制。