Suppr超能文献

使用多图谱引导的3D全卷积网络进行脑图像标注

Brain Image Labeling Using Multi-atlas Guided 3D Fully Convolutional Networks.

作者信息

Fang Longwei, Zhang Lichi, Nie Dong, Cao Xiaohuan, Bahrami Khosro, He Huiguang, Shen Dinggang

机构信息

Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Patch Based Tech Med Imaging (2017). 2017 Sep;10530:12-19. doi: 10.1007/978-3-319-67434-6_2. Epub 2017 Aug 31.

Abstract

Automatic labeling of anatomical structures in brain images plays an important role in neuroimaging analysis. Among all methods, multi-atlas based segmentation methods are widely used, due to their robustness in propagating prior label information. However, non-linear registration is always needed, which is time-consuming. Alternatively, the patch-based methods have been proposed to relax the requirement of image registration, but the labeling is often determined independently by the target image information, without getting direct assistance from the atlases. To address these limitations, in this paper, we propose a multi-atlas guided 3D fully convolutional networks (FCN) for brain image labeling. Specifically, multi-atlas based guidance is incorporated during the network learning. Based on this, the discriminative of the FCN is boosted, which eventually contribute to accurate prediction. Experiments show that the use of multi-atlas guidance improves the brain labeling performance.

摘要

脑图像中解剖结构的自动标注在神经影像分析中起着重要作用。在所有方法中,基于多图谱的分割方法因其在传播先验标注信息方面的稳健性而被广泛使用。然而,总是需要进行非线性配准,这很耗时。另外,基于补丁的方法已被提出以放宽图像配准的要求,但标注通常由目标图像信息独立确定,而没有从图谱中获得直接帮助。为了解决这些局限性,在本文中,我们提出了一种用于脑图像标注的多图谱引导的3D全卷积网络(FCN)。具体而言,在网络学习过程中纳入了基于多图谱的引导。基于此,FCN的判别能力得到增强,最终有助于准确预测。实验表明,使用多图谱引导可提高脑标注性能。

相似文献

1
Brain Image Labeling Using Multi-atlas Guided 3D Fully Convolutional Networks.
Patch Based Tech Med Imaging (2017). 2017 Sep;10530:12-19. doi: 10.1007/978-3-319-67434-6_2. Epub 2017 Aug 31.
2
Automatic brain labeling via multi-atlas guided fully convolutional networks.
Med Image Anal. 2019 Jan;51:157-168. doi: 10.1016/j.media.2018.10.012. Epub 2018 Nov 1.
3
FCN Based Label Correction for Multi-Atlas Guided Organ Segmentation.
Neuroinformatics. 2020 Apr;18(2):319-331. doi: 10.1007/s12021-019-09448-5.
4
Discriminative confidence estimation for probabilistic multi-atlas label fusion.
Med Image Anal. 2017 Dec;42:274-287. doi: 10.1016/j.media.2017.08.008. Epub 2017 Sep 1.
5
Automatic labeling of MR brain images through extensible learning and atlas forests.
Med Phys. 2017 Dec;44(12):6329-6340. doi: 10.1002/mp.12591. Epub 2017 Oct 24.
6
A generative probability model of joint label fusion for multi-atlas based brain segmentation.
Med Image Anal. 2014 Aug;18(6):881-90. doi: 10.1016/j.media.2013.10.013. Epub 2013 Nov 16.
7
Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition.
Neuroimage. 2015 Feb 1;106:34-46. doi: 10.1016/j.neuroimage.2014.11.025. Epub 2014 Nov 20.
8
Anatomical Attention Guided Deep Networks for ROI Segmentation of Brain MR Images.
IEEE Trans Med Imaging. 2020 Jun;39(6):2000-2012. doi: 10.1109/TMI.2019.2962792. Epub 2019 Dec 30.
9
Multi-atlas active contour segmentation method using template optimization algorithm.
BMC Med Imaging. 2019 May 24;19(1):42. doi: 10.1186/s12880-019-0340-6.
10
Automatic macaque brain segmentation based on 7T MRI.
Magn Reson Imaging. 2022 Oct;92:232-242. doi: 10.1016/j.mri.2022.07.001. Epub 2022 Jul 13.

本文引用的文献

1
FULLY CONVOLUTIONAL NETWORKS FOR MULTI-MODALITY ISOINTENSE INFANT BRAIN IMAGE SEGMENTATION.
Proc IEEE Int Symp Biomed Imaging. 2016;2016:1342-1345. doi: 10.1109/ISBI.2016.7493515.
2
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
3
Automatic Segmentation of MR Brain Images With a Convolutional Neural Network.
IEEE Trans Med Imaging. 2016 May;35(5):1252-1261. doi: 10.1109/TMI.2016.2548501. Epub 2016 Mar 30.
4
Automatic labeling of MR brain images by hierarchical learning of atlas forests.
Med Phys. 2016 Mar;43(3):1175-86. doi: 10.1118/1.4941011.
5
Multi-atlas segmentation of biomedical images: A survey.
Med Image Anal. 2015 Aug;24(1):205-219. doi: 10.1016/j.media.2015.06.012. Epub 2015 Jul 6.
6
Hierarchical multi-atlas label fusion with multi-scale feature representation and label-specific patch partition.
Neuroimage. 2015 Feb 1;106:34-46. doi: 10.1016/j.neuroimage.2014.11.025. Epub 2014 Nov 20.
7
Encoding atlases by randomized classification forests for efficient multi-atlas label propagation.
Med Image Anal. 2014 Dec;18(8):1262-73. doi: 10.1016/j.media.2014.06.010. Epub 2014 Jul 2.
8
Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation.
Hum Brain Mapp. 2014 Jun;35(6):2674-97. doi: 10.1002/hbm.22359. Epub 2013 Oct 23.
9
Multi-Atlas Segmentation with Joint Label Fusion.
IEEE Trans Pattern Anal Mach Intell. 2013 Mar;35(3):611-23. doi: 10.1109/TPAMI.2012.143. Epub 2012 Jun 26.
10
Iterative multi-atlas-based multi-image segmentation with tree-based registration.
Neuroimage. 2012 Jan 2;59(1):422-30. doi: 10.1016/j.neuroimage.2011.07.036. Epub 2011 Jul 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验