Suppr超能文献

Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia.

作者信息

Saul J P, Berger R D, Chen M H, Cohen R J

机构信息

Division of Health Sciences and Technology, Harvard University-Massachusetts, Institute of Technology, Cambridge 02139.

出版信息

Am J Physiol. 1989 Jan;256(1 Pt 2):H153-61. doi: 10.1152/ajpheart.1989.256.1.H153.

Abstract

An efficient new technique was developed to investigate heart rate control at all physiologically relevant frequencies by using respiratory activity as a frequency probe of the autonomic nervous response. The transfer function from respiratory activity to heart rate was determined during 6-min periods in which the respiratory rate was voluntarily controlled in a predetermined but erratic fashion. Changes in posture were used to manipulate autonomic balance. Respiratory sinus arrhythmia was determined to be a frequency-dependent phenomenon with the magnitude and phase characteristics of a low-pass filter. In agreement with previous work, at typical respiratory frequencies (greater than 0.15 Hz) increases in heart rate occurred simultaneously with the onset of inspiratory activity; however, at frequencies less than 0.15 Hz the phase relationship was quite different, such that increases in heart rate preceded inspiration. Between 0.15 and 0.45 Hz, the transfer magnitude was consistently lower while the subjects were in the upright posture than when in the supine posture, but below 0.15 Hz, it was equal in both postures. A model for respiratory modulation of heart rate, based on the atrial rate response characteristics determined in the companion paper [Am. J. Physiol. 256 (Heart Circ. Physiol. 25): H142-H152, 1989], suggests that the magnitude and phase characteristics of the subjects in the supine and upright postures differ because of relatively increased sympathetic outflow in the upright posture. A precise and efficient characterization of respiratory sinus arrhythmia can yield considerable insight into the autonomic regulation of the heart.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验