Suppr超能文献

在资源匮乏地区使用基于智能手机的技术辅助牛病的临床鉴别诊断:一项试点研究。

Assisting differential clinical diagnosis of cattle diseases using smartphone-based technology in low resource settings: a pilot study.

作者信息

Beyene Tariku Jibat, Eshetu Amanuel, Abdu Amina, Wondimu Etenesh, Beyi Ashenafi Feyisa, Tufa Takele Beyene, Ibrahim Sami, Revie Crawford W

机构信息

College of Veterinary Medicine and Agriculture, Addis Ababa University, POBox 34, Bishoftu/Debre Zeit, Ethiopia.

Business Economics Group, Wageningen University, Hollandseweg 1, 6706 KN, Wageningen, The Netherlands.

出版信息

BMC Vet Res. 2017 Nov 9;13(1):323. doi: 10.1186/s12917-017-1249-3.

Abstract

BACKGROUND

The recent rise in mobile phone use and increased signal coverage has created opportunities for growth of the mobile Health sector in many low resource settings. This pilot study explores the use of a smartphone-based application, VetAfrica-Ethiopia, in assisting diagnosis of cattle diseases. We used a modified Delphi protocol to select important diseases and Bayesian algorithms to estimate the related disease probabilities based on various clinical signs being present in Ethiopian cattle.

RESULTS

A total of 928 cases were diagnosed during the study period across three regions of Ethiopia, around 70% of which were covered by diseases included in VetAfrica-Ethiopia. Parasitic Gastroenteritis (26%), Blackleg (8.5%), Fasciolosis (8.4%), Pasteurellosis (7.4%), Colibacillosis (6.4%), Lumpy skin disease (5.5%) and CBPP (5.0%) were the most commonly occurring diseases. The highest (84%) and lowest (30%) levels of matching between diagnoses made by student practitioners and VetAfrica-Ethiopia were for Babesiosis and Pasteurellosis, respectively. Multiple-variable logistic regression analysis indicated that the putative disease indicated, the practitioner involved, and the level of confidence associated with the prediction made by VetAfrica-Ethiopia were major determinants of the likelihood that a diagnostic match would be obtained.

CONCLUSIONS

This pilot study demonstrated that the use of such applications can be a valuable means of assisting less experienced animal health professionals in carrying out disease diagnosis which may lead to increased animal productivity through appropriate treatment.

摘要

背景

近期手机使用的增加和信号覆盖范围的扩大,为许多资源匮乏地区的移动健康领域创造了增长机会。这项试点研究探讨了一款基于智能手机的应用程序VetAfrica - Ethiopia在协助诊断牛病方面的应用。我们使用了改良的德尔菲协议来选择重要疾病,并使用贝叶斯算法根据埃塞俄比亚牛出现的各种临床症状来估计相关疾病的概率。

结果

在研究期间,埃塞俄比亚三个地区共诊断出928例病例,其中约70%的病例由VetAfrica - Ethiopia中包含的疾病涵盖。寄生虫性胃肠炎(26%)、黑腿病(8.5%)、肝片吸虫病(8.4%)、巴氏杆菌病(7.4%)、大肠杆菌病(6.4%)、结节性皮肤病(5.5%)和牛传染性胸膜肺炎(5.0%)是最常见的疾病。学生从业者与VetAfrica - Ethiopia做出的诊断之间匹配度最高(84%)和最低(30%)的分别是巴贝斯虫病和巴氏杆菌病。多变量逻辑回归分析表明,VetAfrica - Ethiopia指出的假定疾病、涉及的从业者以及与预测相关的置信水平是获得诊断匹配可能性的主要决定因素。

结论

这项试点研究表明,使用此类应用程序可以成为协助经验不足的动物健康专业人员进行疾病诊断的宝贵手段,通过适当治疗可能提高动物生产力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/211d/5679378/49ddbb219c58/12917_2017_1249_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验