State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
Science. 2017 Dec 15;358(6369):1423-1427. doi: 10.1126/science.aao3212. Epub 2017 Nov 9.
Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (GeSbTe). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (ScSbTe) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems.
操作速度是相变随机存取存储器 (PCRAM) 技术的一个关键挑战,特别是对于实现亚纳秒级高速缓存存储器而言。商用化的 PCRAM 产品受到数十纳秒写入速度的限制,这源于非晶锗锑碲 (GeSbTe) 结晶过程中的随机晶核形成。在这里,我们展示了一种加速结晶动力学的合金化策略。我们设计的锑化钪 (ScSbTe) 化合物在没有预编程的情况下,在大型传统 PCRAM 器件中实现了仅 700 皮秒的写入速度。这种超快的结晶源于通过几何匹配和稳定非晶态晶体前体的坚固锑化钪 (ScTe) 化学键,降低了成核的随机性。通过合金设计控制成核为开发缓存型 PCRAM 技术铺平了道路,从而提高计算系统的工作效率。