Department of Biomedical Engineering, University of California Davis, Davis, California, USA.
Nat Chem Biol. 2018 Jan;14(1):29-35. doi: 10.1038/nchembio.2514. Epub 2017 Nov 13.
Assembly of recombinant multiprotein systems requires multiple culturing and purification steps that scale linearly with the number of constituent proteins. This problem is particularly pronounced in the preparation of the 34 proteins involved in transcription and translation systems, which are fundamental biochemistry tools for reconstitution of cellular pathways ex vivo. Here, we engineer synthetic microbial consortia consisting of between 15 and 34 Escherichia coli strains to assemble the 34 proteins in a single culturing, lysis, and purification procedure. The expression of these proteins is controlled by synthetic genetic modules to produce the proteins at the correct ratios. We show that the pure multiprotein system is functional and reproducible, and has low protein contaminants. We also demonstrate its application in the screening of synthetic promoters and protease inhibitors. Our work establishes a novel strategy for producing pure translation machinery, which may be extended to the production of other multiprotein systems.
组装重组多蛋白系统需要多个培养和纯化步骤,这些步骤的数量与组成蛋白的数量呈线性关系。在转录和翻译系统中涉及的 34 种蛋白的制备中,这个问题尤为突出,这些蛋白是体外重建细胞途径的基本生物化学工具。在这里,我们设计了由 15 到 34 个大肠杆菌菌株组成的合成微生物群落,以便在单个培养、裂解和纯化过程中组装 34 种蛋白。这些蛋白的表达受合成遗传模块的控制,以产生正确比例的蛋白。我们表明,该纯多蛋白系统是功能齐全且可重复的,并且具有低蛋白污染物。我们还展示了它在筛选合成启动子和蛋白酶抑制剂中的应用。我们的工作为生产纯翻译机制建立了一种新策略,该策略可能扩展到其他多蛋白系统的生产。