State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Ave, 210023, Nanjing, China.
Nat Commun. 2017 Nov 14;8(1):1498. doi: 10.1038/s41467-017-01614-0.
Measuring the localized transient heat generation is critical for developing applications of nanomaterials in areas of photothermal therapy (PTT), drug delivery, optomechanics and biological processes engineering. However, accurate thermometry with high spatiotemporal resolution is still a challenge. Here we develop a thermosensitive polymer-capped gold nanorod (AuNRs@pNIPAAm), which has temperature-dependent local surface plasmon resonance spectra due to the submolecular conformational change of pNIPAAm molecules. We measure the conformational dynamics on individual gold nanorods at the milliseconds level by the developed spatiotemporal resolution plasmonic spectroscopy (SRPS) and find that it has a fast (<4 ms), linear and reversible mechanoresponse to temperature changes as small as 80 mK. The rapid and highly sensitive thermosensitive AuNRs@pNIPAAm opens a new way to achieve spatiotemporal thermometry for potential applications in PTT and other biological research.
测量局部瞬态热生成对于将纳米材料应用于光热治疗 (PTT)、药物输送、光机械和生物过程工程等领域至关重要。然而,具有高时空分辨率的精确测温仍然是一个挑战。在这里,我们开发了一种热敏聚合物包覆的金纳米棒 (AuNRs@pNIPAAm),由于 pNIPAAm 分子的亚分子构象变化,它具有随温度变化的局部表面等离子体共振光谱。我们通过开发的时空分辨率等离子体光谱学 (SRPS) 在毫秒级别的单个金纳米棒上测量构象动力学,并发现它对小至 80mK 的温度变化具有快速(<4ms)、线性和可逆的机械响应。快速且高灵敏度的热敏 AuNRs@pNIPAAm 为实现潜在的 PTT 和其他生物研究中的时空测温开辟了新途径。