Suppr超能文献

基于马尔可夫链的空气污染对老年哮喘住院急性效应的估计。

Markov Chain-Based Acute Effect Estimation of Air Pollution on Elder Asthma Hospitalization.

机构信息

Business School, Sichuan University, Chengdu, Sichuan 610000, China.

Big-Data Center of Biomedicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610000, China.

出版信息

J Healthc Eng. 2017;2017:2463065. doi: 10.1155/2017/2463065. Epub 2017 Sep 24.

Abstract

BACKGROUND

Asthma caused substantial economic and health care burden and is susceptible to air pollution. Particularly, when it comes to elder asthma patient (older than 65), the phenomenon is more significant. The aim of this study is to investigate the Markov-based acute effects of air pollution on elder asthma hospitalizations, in forms of transition probabilities.

METHODS

A retrospective, population-based study design was used to assess temporal patterns in hospitalizations for asthma in a region of Sichuan province, China. Approximately 12 million residents were covered during this period. Relative risk analysis and Markov chain model were employed on daily hospitalization state estimation.

RESULTS

Among PM2.5, PM10, NO, and SO, only SO was significant. When air pollution is severe, the transition probability from a low-admission state (previous day) to high-admission state (next day) is 35.46%, while it is 20.08% when air pollution is mild. In particular, for female-cold subgroup, the counterparts are 30.06% and 0.01%, respectively.

CONCLUSIONS

SO was a significant risk factor for elder asthma hospitalization. When air pollution worsened, the transition probabilities from each state to high admission states increase dramatically. This phenomenon appeared more evidently, especially in female-cold subgroup (which is in cold season for female admissions). Based on our work, admission amount forecast, asthma intervention, and corresponding healthcare allocation can be done.

摘要

背景

哮喘造成了巨大的经济和医疗保健负担,并且容易受到空气污染的影响。特别是对于老年哮喘患者(65 岁以上),这种现象更为明显。本研究旨在探讨空气污染对老年哮喘住院的马尔可夫急性影响,以转移概率的形式表现。

方法

采用回顾性、基于人群的研究设计,评估中国四川省某一地区哮喘住院的时间模式。在此期间,约有 1200 万居民被覆盖。采用相对风险分析和马尔可夫链模型对每日住院状态进行估计。

结果

在 PM2.5、PM10、NO 和 SO 中,只有 SO 具有显著意义。当空气污染严重时,从低入院状态(前一天)到高入院状态(下一天)的转移概率为 35.46%,而当空气污染较轻时,转移概率为 20.08%。特别是对于女性-寒冷亚组,对应的数值分别为 30.06%和 0.01%。

结论

SO 是老年哮喘住院的一个重要危险因素。当空气污染恶化时,从每个状态到高入院状态的转移概率会显著增加。这种现象在女性-寒冷亚组中更为明显(女性入院处于寒冷季节)。基于我们的工作,可以进行入院量预测、哮喘干预和相应的医疗保健分配。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce1c/5632917/6950afd6e5fe/JHE2017-2463065.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验