Ivey Kerry L, Rimm Eric B, Kraft Peter, Clish Clary B, Cassidy Aedin, Hodgson Jonathan, Croft Kevin, Wolpin Brian, Liang Liming
Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
J Nutr Sci. 2017 Jul 14;6:e34. doi: 10.1017/jns.2017.27. eCollection 2017.
High flavonoid consumption can improve vascular health. Exploring flavonoid-metabolome relationships in population-based settings is challenging, as: (i) there are numerous confounders of the flavonoid-metabolome relationship; and (ii) the set of dependent metabolite variables are inter-related, highly variable and multidimensional. The Metabolite Fingerprint Score has been developed as a means of approaching such data. This study aims to compare its performance with that of more traditional methods, in identifying the metabolomic fingerprint of high and low flavonoid consumers. This study did not aim to identify biomarkers of intake, but rather to explore how systemic metabolism differs in high and low flavonoid consumers. Using liquid chromatography-tandem MS, 174 circulating plasma metabolites were profiled in 584 men and women who had complete flavonoid intake assessment. Participants were randomised to one of two datasets: (a) training dataset, to determine the models for the discrimination variables ( 399); and (b) validation dataset, to test the capacity of the variables to differentiate higher from lower total flavonoid consumers ( 185). The stepwise and full canonical variables did not discriminate in the validation dataset. The Metabolite Fingerprint Score successfully identified a unique pattern of metabolites that discriminated high from low flavonoid consumers in the validation dataset in a multivariate-adjusted setting, and provides insight into the relationship of flavonoids with systemic lipid metabolism. Given increasing use of metabolomics data in dietary association studies, and the difficulty in validating findings using untargeted metabolomics, this paper is of timely importance to the field of nutrition. However, further validation studies are required.
大量摄入黄酮类化合物可改善血管健康。在基于人群的研究中探索黄酮类化合物与代谢组之间的关系具有挑战性,原因如下:(i)黄酮类化合物与代谢组关系存在众多混杂因素;(ii)相关代谢物变量集相互关联、高度可变且具有多维度性。代谢物指纹评分已被开发出来作为处理此类数据的一种方法。本研究旨在比较其与更传统方法在识别高黄酮类化合物消费者和低黄酮类化合物消费者代谢组指纹方面的性能。本研究并非旨在识别摄入量的生物标志物,而是探索高黄酮类化合物消费者和低黄酮类化合物消费者的全身代谢有何不同。使用液相色谱 - 串联质谱法,对584名完成黄酮类化合物摄入量评估的男性和女性的174种循环血浆代谢物进行了分析。参与者被随机分配到两个数据集中的一个:(a)训练数据集,用于确定判别变量的模型(399个);(b)验证数据集,用于测试这些变量区分高总黄酮类化合物消费者和低总黄酮类化合物消费者的能力(185个)。逐步变量和全规范变量在验证数据集中没有起到区分作用。代谢物指纹评分成功地识别出了一种独特的代谢物模式,该模式在多变量调整的情况下,在验证数据集中区分了高黄酮类化合物消费者和低黄酮类化合物消费者,并为黄酮类化合物与全身脂质代谢的关系提供了见解。鉴于代谢组学数据在饮食关联研究中的使用日益增加,以及使用非靶向代谢组学验证研究结果存在困难,本文对营养领域具有及时的重要性。然而,还需要进一步的验证研究。