Department of Psychology, University of California, Berkeley.
Healthcast SA.
J Abnorm Psychol. 2017 Nov;126(8):1044-1056. doi: 10.1037/abn0000311.
Individual variation is increasingly recognized as important to psychopathology research. Concurrently, new methods of analysis based on network models are bringing new perspectives on mental (dys)function. This current work analyzed idiographic multivariate time series data using a novel network methodology that incorporates contemporaneous and lagged associations in mood and anxiety symptomatology. Data were taken from 40 individuals with generalized anxiety disorder (GAD), major depressive disorder (MDD), or comorbid GAD and MDD, who answered questions about 21 descriptors of mood and anxiety symptomatology 4 times a day over a period of approximately 30 days. The model provided an excellent fit to the intraindividual symptom dynamics of all 40 individuals. The most central symptoms in contemporaneous systems were those related to positive and negative mood. The temporal networks highlighted the importance of anger to symptomatology, while also finding that depressed mood and worry-the principal diagnostic criteria for GAD and MDD-were the least influential nodes across the sample. The method's potential for analysis of individual symptom patterns is demonstrated by 3 exemplar participants. Idiographic network-based analysis may fundamentally alter the way psychopathology is assessed, classified, and treated, allowing researchers and clinicians to better understand individual symptom dynamics. (PsycINFO Database Record
个体差异越来越被认为对精神病理学研究很重要。同时,基于网络模型的新分析方法为心理(功能)障碍带来了新的视角。本研究使用一种新的网络方法分析了个体多变量时间序列数据,该方法结合了情绪和焦虑症状学的同期和滞后关联。数据来自 40 名广泛性焦虑障碍(GAD)、重性抑郁障碍(MDD)或共病 GAD 和 MDD 的个体,他们在大约 30 天的时间内每天 4 次回答有关 21 个情绪和焦虑症状描述符的问题。该模型非常适合所有 40 名个体的个体内症状动态。同期系统中最核心的症状与正负情绪有关。时间网络强调了愤怒对症状学的重要性,同时也发现抑郁情绪和担忧——GAD 和 MDD 的主要诊断标准——是整个样本中最不具影响力的节点。该方法通过 3 个示例参与者分析个体症状模式的潜力得到了证明。基于个体的网络分析可能从根本上改变精神病理学的评估、分类和治疗方式,使研究人员和临床医生能够更好地理解个体症状动态。