Suppr超能文献

表面增强拉曼光谱分析中的选择性/特异性提高策略

Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis.

作者信息

Wang Feng, Cao Shiyu, Yan Ruxia, Wang Zewei, Wang Dan, Yang Haifeng

机构信息

The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, China.

出版信息

Sensors (Basel). 2017 Nov 21;17(11):2689. doi: 10.3390/s17112689.

Abstract

Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for the discrimination, identification, and potential quantification of certain compounds/organisms. However, its real application is challenging due to the multiple interference from the complicated detection matrix. Therefore, selective/specific detection is crucial for the real application of SERS technique. We summarize in this review five selective/specific detection techniques (chemical reaction, antibody, aptamer, molecularly imprinted polymers and microfluidics), which can be applied for the rapid and reliable selective/specific detection when coupled with SERS technique.

摘要

表面增强拉曼光谱(SERS)是一种用于某些化合物/生物体鉴别、识别及潜在定量分析的强大技术。然而,由于复杂检测基质的多重干扰,其实际应用具有挑战性。因此,选择性/特异性检测对于SERS技术的实际应用至关重要。在本综述中,我们总结了五种选择性/特异性检测技术(化学反应、抗体、适体、分子印迹聚合物和微流控技术),当与SERS技术结合使用时,这些技术可用于快速、可靠的选择性/特异性检测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/318c/5713634/d3fd9aa9e67f/sensors-17-02689-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验