Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
Department of Integrated Mathematical Oncology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
Sci Rep. 2017 Nov 22;7(1):15996. doi: 10.1038/s41598-017-15924-2.
The induction of ectopic lymph node structures (ELNs) holds great promise to augment immunotherapy against multiple cancers including metastatic melanoma, in which ELN formation has been associated with a unique immune-related gene expression signature composed of distinct chemokines. To investigate the therapeutic potential of ELNs induction, preclinical models of ELNs are needed for interrogation of these chemokines. Computational models provide a non-invasive, cost-effective method to investigate leukocyte trafficking in the tumor microenvironment, but parameterizing such models is difficult due to differing assay conditions and contexts among the literature. To better achieve this, we systematically performed microchemotaxis assays on purified immune subsets including human pan-T cells, CD4 T cells, CD8 T cells, B cells, and NK cells, with 49 recombinant chemokines using a singular technique, and standardized conditions resulting in a dataset representing 238 assays. We then outline a groundwork computational model that can simulate cellular migration in the tumor microenvironment in response to a chemoattractant gradient created from stromal, lymphoid, or antigen presenting cell interactions. The resulting model can then be parameterized with standardized data, such as the dataset presented here, and demonstrates how a computational approach can help elucidate developing ELNs and their impact on tumor progression.
异位淋巴结结构(ELN)的诱导在增强针对多种癌症的免疫疗法方面具有很大的潜力,包括转移性黑色素瘤,其中 ELN 的形成与独特的免疫相关基因表达特征相关,该特征由不同的趋化因子组成。为了研究 ELN 诱导的治疗潜力,需要进行 ELN 的临床前模型研究,以研究这些趋化因子。计算模型为研究肿瘤微环境中的白细胞迁移提供了一种非侵入性、具有成本效益的方法,但由于文献中的不同检测条件和背景,对这些模型进行参数化很困难。为了更好地实现这一目标,我们系统地使用一种单一技术,对包括人 pan-T 细胞、CD4 T 细胞、CD8 T 细胞、B 细胞和 NK 细胞在内的纯免疫亚群进行了 49 种重组趋化因子的微趋化实验,采用标准化条件,得到了代表 238 次实验的数据集。然后,我们概述了一个基础计算模型,该模型可以模拟肿瘤微环境中细胞对由基质、淋巴样或抗原呈递细胞相互作用产生的趋化剂梯度的迁移。然后可以使用标准化数据(例如这里提出的数据集)对得到的模型进行参数化,并展示计算方法如何帮助阐明正在发育的 ELN 及其对肿瘤进展的影响。