School of Earth and Sustainability and Stockbridge School of Agriculture, University of Massachusetts, 411 Paige Lab, Amherst, MA, 01003, USA.
Earth System Science Department, Stanford University, Via Ortega 473, Stanford, CA, 94305, USA.
Nat Commun. 2017 Nov 24;8(1):1771. doi: 10.1038/s41467-017-01406-6.
Soils represent the largest carbon reservoir within terrestrial ecosystems. The mechanisms controlling the amount of carbon stored and its feedback to the climate system, however, remain poorly resolved. Global carbon models assume that carbon cycling in upland soils is entirely driven by aerobic respiration; the impact of anaerobic microsites prevalent even within well-drained soils is missed within this conception. Here, we show that anaerobic microsites are important regulators of soil carbon persistence, shifting microbial metabolism to less efficient anaerobic respiration, and selectively protecting otherwise bioavailable, reduced organic compounds such as lipids and waxes from decomposition. Further, shifting from anaerobic to aerobic conditions leads to a 10-fold increase in volume-specific mineralization rate, illustrating the sensitivity of anaerobically protected carbon to disturbance. The vulnerability of anaerobically protected carbon to future climate or land use change thus constitutes a yet unrecognized soil carbon-climate feedback that should be incorporated into terrestrial ecosystem models.
土壤是陆地生态系统中最大的碳库。然而,控制土壤中储存碳的数量及其对气候系统反馈的机制仍未得到很好的解决。全球碳模型假设旱地土壤中的碳循环完全由需氧呼吸驱动;即使在排水良好的土壤中普遍存在的厌氧微生境的影响,在这一概念中也被忽略了。在这里,我们表明,厌氧微生境是土壤碳持久性的重要调节者,它将微生物代谢转变为效率较低的厌氧呼吸,并选择性地保护其他可用的、还原的有机化合物,如脂质和蜡,免受分解。此外,从厌氧条件转变为需氧条件会导致比体积特定矿化率增加 10 倍,这说明了厌氧保护碳对干扰的敏感性。因此,厌氧保护碳对未来气候或土地利用变化的脆弱性构成了一个尚未被认识到的土壤碳-气候反馈,应该被纳入陆地生态系统模型。