Suppr超能文献

为诱导、引导和增强骨愈合而制定的策略。

Strategies Developed to Induce, Direct, and Potentiate Bone Healing.

作者信息

Collignon Anne-Margaux, Lesieur Julie, Vacher Christian, Chaussain Catherine, Rochefort Gael Y

机构信息

EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, Life Imaging Platform (PIV), University Paris Descartes, Montrouge, France.

Department of Odontology, University Hospitals PNVS, Assistance Publique Hopitaux De Paris, Paris, France.

出版信息

Front Physiol. 2017 Nov 14;8:927. doi: 10.3389/fphys.2017.00927. eCollection 2017.

Abstract

Bone exhibits a great ability for endogenous self-healing. Nevertheless, impaired bone regeneration and healing is on the rise due to population aging, increasing incidence of bone trauma and the clinical need for the development of alternative options to autologous bone grafts. Current strategies, including several biomolecules, cellular therapies, biomaterials, and different permutations of these, are now developed to facilitate the vascularization and the engraftment of the constructs, to recreate ultimately a bone tissue with the same properties and characteristics of the native bone. In this review, we browse the existing strategies that are currently developed, using biomolecules, cells and biomaterials, to induce, direct and potentiate bone healing after injury and further discuss the biological processes associated with this repair.

摘要

骨骼具有很强的内源性自我修复能力。然而,由于人口老龄化、骨创伤发病率不断上升以及临床上对自体骨移植替代方案的需求,骨再生和愈合受损的情况正在增加。目前已开发出多种策略,包括几种生物分子、细胞疗法、生物材料以及它们的不同组合,以促进构建体的血管化和植入,最终重建具有与天然骨相同特性和特征的骨组织。在本综述中,我们浏览了目前正在开发的利用生物分子、细胞和生物材料诱导、引导和增强损伤后骨愈合的现有策略,并进一步讨论与此修复相关的生物学过程。

相似文献

1
Strategies Developed to Induce, Direct, and Potentiate Bone Healing.
Front Physiol. 2017 Nov 14;8:927. doi: 10.3389/fphys.2017.00927. eCollection 2017.
2
Biomaterial-mediated strategies targeting vascularization for bone repair.
Drug Deliv Transl Res. 2016 Apr;6(2):77-95. doi: 10.1007/s13346-015-0236-0.
3
The rational use of animal models in the evaluation of novel bone regenerative therapies.
Bone. 2015 Jan;70:73-86. doi: 10.1016/j.bone.2014.07.010. Epub 2014 Jul 13.
4
Tissue Engineering and Cell-Based Therapies for Fractures and Bone Defects.
Front Bioeng Biotechnol. 2018 Jul 31;6:105. doi: 10.3389/fbioe.2018.00105. eCollection 2018.
5
Advances in bioinks and in vivo imaging of biomaterials for CNS applications.
Acta Biomater. 2019 Sep 1;95:60-72. doi: 10.1016/j.actbio.2019.05.006. Epub 2019 May 8.
6
Strategies to Stimulate Mobilization and Homing of Endogenous Stem and Progenitor Cells for Bone Tissue Repair.
Front Bioeng Biotechnol. 2015 Jun 2;3:79. doi: 10.3389/fbioe.2015.00079. eCollection 2015.
8
Recapitulating endochondral ossification: a promising route to in vivo bone regeneration.
J Tissue Eng Regen Med. 2015 Aug;9(8):889-902. doi: 10.1002/term.1918. Epub 2014 Jun 11.
10
Tissue Engineered Skin and Wound Healing: Current Strategies and Future Directions.
Curr Pharm Des. 2017;23(24):3455-3482. doi: 10.2174/1381612823666170526094606.

引用本文的文献

1
2
Research advances on silence information regulator 6 as a potential therapeutic target for bone regeneration and repair.
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2024 Aug 25;53(4):427-433. doi: 10.3724/zdxbyxb-2023-0615.
3
3D printed bioabsorbable composite scaffolds of poly (lactic acid)-tricalcium phosphate-ceria with osteogenic property for bone regeneration.
Biomater Biosyst. 2023 Dec 18;13:100086. doi: 10.1016/j.bbiosy.2023.100086. eCollection 2024 Mar.
4
In Vitro Study of Composite Cements on Mesenchymal Stem Cells of Palatal Origin.
Int J Mol Sci. 2023 Jun 30;24(13):10911. doi: 10.3390/ijms241310911.
5
Tissue Engineering Strategies Applied in Bone Regeneration and Bone Repair.
Bioengineering (Basel). 2023 May 25;10(6):644. doi: 10.3390/bioengineering10060644.
6
Titanium surface interacting with blood clot enhanced migration and osteogenic differentiation of bone marrow mesenchymal stem cells.
Front Bioeng Biotechnol. 2023 May 16;11:1136406. doi: 10.3389/fbioe.2023.1136406. eCollection 2023.
7
Cell-Biomaterial Interactions.
Bioengineering (Basel). 2023 Feb 11;10(2):241. doi: 10.3390/bioengineering10020241.

本文引用的文献

1
Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit.
Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10660-10665. doi: 10.1073/pnas.1702914114. Epub 2017 Sep 18.
2
Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation.
Materials (Basel). 2016 Sep 20;9(9):785. doi: 10.3390/ma9090785.
4
Regulation of Embryonic Stem Cell Self-Renewal and Differentiation by MicroRNAs.
Cell Reprogram. 2017 Jun;19(3):150-158. doi: 10.1089/cell.2016.0048. Epub 2017 Mar 9.
5
Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering.
Clin Sci (Lond). 2017 Apr 25;131(8):699-713. doi: 10.1042/CS20170047. Epub 2017 Feb 16.
6
Bone regeneration in a rabbit critical femoral defect by means of magnetic hydroxyapatite macroporous scaffolds.
J Biomed Mater Res B Appl Biomater. 2018 Feb;106(2):546-554. doi: 10.1002/jbm.b.33836. Epub 2017 Feb 15.
7
Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture.
Biomaterials. 2017 Apr;124:106-115. doi: 10.1016/j.biomaterials.2017.01.042. Epub 2017 Feb 2.
8
The Role of the Osteocyte in Bone and Nonbone Disease.
Endocrinol Metab Clin North Am. 2017 Mar;46(1):1-18. doi: 10.1016/j.ecl.2016.09.003. Epub 2016 Dec 12.
9
Complications Associated With Bone Morphogenetic Protein in the Lumbar Spine.
Orthopedics. 2017 Mar 1;40(2):e229-e237. doi: 10.3928/01477447-20161213-06. Epub 2016 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验