Suppr超能文献

具有增强抗真菌活性的碳纳米管表面修饰用于控制植物真菌病原体

Surface Modification of Carbon Nanotubes with an Enhanced Antifungal Activity for the Control of Plant Fungal Pathogen.

作者信息

Wang Xiuping, Zhou Zilin, Chen Fangfang

机构信息

College of Life Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China.

CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.

出版信息

Materials (Basel). 2017 Nov 30;10(12):1375. doi: 10.3390/ma10121375.

Abstract

The addition of surface functional groups to multi-walled carbon nanotubes (MWCNTs) expands their application in engineering, materials, and life science. In the study, we explored the antifungal activities of MWCNTs with different surface groups against an important plant pathogenic fungi . All of the OH-, COOH-, and NH₂-modified MWCNTs showed enhanced inhibition in spore elongation and germination than the pristine MWCNTs. The length of spores decreased by almost a half from 54.5 μm to 28.3, 27.4, and 29.5 μm, after being treated with 500 μg·mL MWCNTs-COOH, MWCNTs-OH, and MWCNTs-NH₂ separately. Furthermore, the spore germination was remarkably inhibited by surface-modified MWCNTs, and the germination rate was only about 18.2%, three times lower than pristine MWCNTs. The possible antifungal mechanism of MWCNTs is also discussed. Given the superior antifungal activity of surface modified MWCNTs and the fact that MWCNTs can be mass-produced with facile surface modification at low cost, it is expected that this carbon nanomaterial may find important applications in plant protection.

摘要

在多壁碳纳米管(MWCNTs)上添加表面官能团扩展了它们在工程、材料和生命科学领域的应用。在本研究中,我们探究了具有不同表面基团的多壁碳纳米管对一种重要植物病原真菌的抗真菌活性。所有经羟基(OH-)、羧基(COOH-)和氨基(NH₂-)修饰的多壁碳纳米管在抑制孢子伸长和萌发方面比原始的多壁碳纳米管表现出更强的效果。在用500μg·mL的羧基修饰多壁碳纳米管(MWCNTs-COOH)、羟基修饰多壁碳纳米管(MWCNTs-OH)和氨基修饰多壁碳纳米管(MWCNTs-NH₂)分别处理后,孢子长度从54.5μm下降了近一半,分别降至28.3μm、27.4μm和29.5μm。此外,表面修饰的多壁碳纳米管显著抑制了孢子萌发,萌发率仅约为18.2%,比原始多壁碳纳米管低三倍。本文还讨论了多壁碳纳米管可能的抗真菌机制。鉴于表面修饰的多壁碳纳米管具有优异的抗真菌活性,以及多壁碳纳米管可以通过低成本的简便表面修饰进行大规模生产这一事实,预计这种碳纳米材料可能在植物保护中找到重要应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/633e/5744310/244e579455f1/materials-10-01375-g001.jpg

相似文献

3
[Effect of functionalized multi-walled carbon nanotubes on L02 cells].
Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2010 Aug;32(4):449-55. doi: 10.3881/j.issn.1000-503X.2010.04.020.
5
Physiological aspects of the interaction of multi-walled carbon nanotubes with Beauveria bassiana (Balsamo) Vuillem in entomopathogenic spores.
J Environ Sci Health A Tox Hazard Subst Environ Eng. 2014;49(7):863-8. doi: 10.1080/10934529.2014.882684.
6
Multi-walled carbon nanotubes produced after forest fires improve germination and development of .
PeerJ. 2020 Apr 23;8:e8634. doi: 10.7717/peerj.8634. eCollection 2020.
9
Comparison of cytotoxic and inflammatory responses of pristine and functionalized multi-walled carbon nanotubes in RAW 264.7 mouse macrophages.
J Hazard Mater. 2012 Jun 15;219-220:203-12. doi: 10.1016/j.jhazmat.2012.03.079. Epub 2012 Apr 5.
10
Wood Surface Modification with Hybrid Materials Based on Multi-Walled Carbon Nanotubes.
Nanomaterials (Basel). 2022 Jun 9;12(12):1990. doi: 10.3390/nano12121990.

引用本文的文献

2
3
Nanoformulations Insights: A Novel Paradigm for Antifungal Therapies and Future Perspectives.
Curr Drug Deliv. 2024;21(9):1241-1272. doi: 10.2174/0115672018270783231002115728.
4
The Effect of Functionalized Multiwall Carbon Nanotubes with Fe and Mn Oxides on L.
Plants (Basel). 2023 May 11;12(10):1959. doi: 10.3390/plants12101959.
5
Nanoparticle formulations for therapeutic delivery, pathogen imaging and theranostic applications in bacterial infections.
Theranostics. 2023 Mar 5;13(5):1545-1570. doi: 10.7150/thno.82790. eCollection 2023.
6
Nanomaterials in food industry for the protection from mycotoxins: an update.
3 Biotech. 2023 Feb;13(2):64. doi: 10.1007/s13205-023-03478-2. Epub 2023 Jan 27.
7
Nanotechnological Interventions in Agriculture.
Nanomaterials (Basel). 2022 Aug 3;12(15):2667. doi: 10.3390/nano12152667.
8
Carbon nanostructures: a comprehensive review of potential applications and toxic effects.
3 Biotech. 2022 Aug;12(8):159. doi: 10.1007/s13205-022-03175-6. Epub 2022 Jul 6.
9
Engineering plants with carbon nanotubes: a sustainable agriculture approach.
J Nanobiotechnology. 2022 Jun 14;20(1):275. doi: 10.1186/s12951-022-01483-w.
10

本文引用的文献

1
Review on the Antimicrobial Properties of Carbon Nanostructures.
Materials (Basel). 2017 Sep 11;10(9):1066. doi: 10.3390/ma10091066.
2
Nanosensor Technology Applied to Living Plant Systems.
Annu Rev Anal Chem (Palo Alto Calif). 2017 Jun 12;10(1):113-140. doi: 10.1146/annurev-anchem-061516-045310.
5
Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics.
Nat Mater. 2017 Feb;16(2):264-272. doi: 10.1038/nmat4771. Epub 2016 Oct 31.
7
Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria.
Small. 2013 Aug 26;9(16):2735-46. doi: 10.1002/smll.201202792. Epub 2013 Mar 6.
8
Asbestos-like pathogenicity of long carbon nanotubes alleviated by chemical functionalization.
Angew Chem Int Ed Engl. 2013 Feb 18;52(8):2274-8. doi: 10.1002/anie.201207664. Epub 2013 Jan 14.
9
High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass.
Ecotoxicol Environ Saf. 2013 Feb;88:9-15. doi: 10.1016/j.ecoenv.2012.10.031. Epub 2012 Dec 6.
10
Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum.
Colloids Surf B Biointerfaces. 2013 Mar 1;103:136-42. doi: 10.1016/j.colsurfb.2012.09.044. Epub 2012 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验