Suppr超能文献

解决单层 MoS 导带中的自旋劈裂问题。

Resolving the spin splitting in the conduction band of monolayer MoS.

机构信息

Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.

Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.

出版信息

Nat Commun. 2017 Dec 5;8(1):1938. doi: 10.1038/s41467-017-02047-5.

Abstract

Time-reversal symmetry and broken spin degeneracy enable the exploration of spin and valley quantum degrees of freedom in monolayer transition-metal dichalcogenides. While the strength of the large spin splitting in the valance band of these materials is now well-known, probing the 10-100 times smaller splitting in the conduction band poses significant challenges. Since it is easier to achieve n-type conduction in most of them, resolving the energy levels in the conduction band is crucial for the prospect of developing new spintronic and valleytronic devices. Here, we study quantum transport in high mobility monolayer MoS devices where we observe well-developed quantized conductance in multiples of e /h in zero magnetic field. We extract a sub-band spacing energy of 0.8 meV. The application of a magnetic field gradually increases the interband spacing due to the valley-Zeeman effect. Here, we extract a g-factor of ~2.16 in the conduction band of monolayer MoS.

摘要

时间反转对称性和自旋简并破缺使得人们能够探索单层过渡金属二卤族化合物中的自旋和谷量子自由度。虽然这些材料价带中的大自旋劈裂强度现在已经为人所知,但探测导带中 10-100 倍小的劈裂却带来了巨大的挑战。由于在大多数情况下更容易实现 n 型传导,因此解析导带中的能级对于开发新型的自旋电子学和谷电子学器件的前景至关重要。在这里,我们研究了在高迁移率单层 MoS 器件中的量子输运,在零磁场中我们观察到了多个 e/h 的量子化电导。我们提取出的子带间隔能量为 0.8meV。磁场的应用由于谷-塞曼效应逐渐增大了能带间的间隔。在这里,我们在单层 MoS 的导带中提取出了约 2.16 的 g 因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e417/5717150/e6f5dc373b2f/41467_2017_2047_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验