Suppr超能文献

通过电话调查进行慢性病风险和保护因素监测系统(Vigitel):加权方法的变化

Surveillance System for Risk and Protective Factors for Chronic Diseases by Telephone Survey (Vigitel): changes in weighting methodology.

作者信息

Bernal Regina Tomie Ivata, Iser Betine Pinto Moehlecke, Malta Deborah Carvalho, Claro Rafael Moreira

机构信息

Universidade de São Paulo, Núcleo de Pesquisas Epidemiológicas em Nutrição e Saúde, São Paulo-SP, Brasil.

Universidade do Sul de Santa Catarina, Programa de Pós-Graduação em Ciências da Saúde, Tubarão- SC, Brasil.

出版信息

Epidemiol Serv Saude. 2017 Oct-Dec;26(4):701-712. doi: 10.5123/S1679-49742017000400003.

Abstract

OBJECTIVE

to introduce the methodology used to calculate post-stratification weights of the 2012 Surveillance System for Risk and Protective Factors for Chronic Diseases by Telephone Survey (Vigitel) and to compare the trends of indicators estimated by cell-by-cell weighting and raking methods.

METHODS

in this panel of cross-sectional studies, the prevalences of smokers, overweight, and intake of fruits and vegetables from 2006 to 2012 were estimated using the cell-by-cell weighting and raking methods.

RESULTS

there were no differences in time trends of the indicators estimated by both methods, but the prevalence of smokers estimated by the raking method was lower than the estimated by cell-by-cell weighting, whilst the prevalence of fruit and vegetable intake was higher; for overweight, there was no difference between the methods.

CONCLUSION

raking method presented higher accuracy of the estimates when compared to cell-by-cell weighting method, proving to be most convenient, although it presents register coverage bias.

摘要

目的

介绍用于计算2012年慢性病风险与保护因素电话调查监测系统(Vigitel)分层后权重的方法,并比较逐格加权法和拉科法估计指标的趋势。

方法

在这组横断面研究中,使用逐格加权法和拉科法估计了2006年至2012年吸烟者、超重者以及水果和蔬菜摄入量的患病率。

结果

两种方法估计的指标时间趋势没有差异,但拉科法估计的吸烟者患病率低于逐格加权法,而水果和蔬菜摄入量的患病率则较高;对于超重情况,两种方法之间没有差异。

结论

与逐格加权法相比,拉科法的估计准确性更高,虽然存在登记覆盖偏差,但被证明是最方便的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验