Pence Jacquelyn C, Clancy Kathryn B H, Harley Brendan A C
Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews St, Urbana, IL 61801, USA.
Department of Anthropology, University of Illinois at Urbana-Champaign, 607 S. Mathews St, Urbana IL 61801, USA.
Adv Biosyst. 2017 Sep;1(9). doi: 10.1002/adbi.201700056. Epub 2017 Aug 15.
Biomaterial vascularization remains a major focus in the field of tissue engineering. Biomaterial culture of endometrial cells is described as a platform to inform the design of proangiogenic biomaterials. The endometrium undergoes rapid growth and shedding of dense vascular networks during each menstrual cycle mediated via estradiol and progesterone in vivo. Cocultures of endometrial epithelial and stromal cells encapsulated within a methacrylamide-functionalized gelatin hydrogel are employed. It is reported that proangiogenic gene expression profiles and vascular endothelial growth factor production are hormone dependent in endometrial epithelial cells, but that hormone signals have no effect on human telomerase reverse transcriptase (hTERT)-immortalized endometrial stromal cells. This study subsequently examines whether the magnitude of epithelial cell response is sufficient to induce changes in human umbilical vein endothelial cell network formation. Incorporation of endometrial stromal cells improves vessel formation, but co-culture with endometrial epithelial cells leads to a decrease in vascular formation, suggesting the need for stratified cocultures of endometrial epithelial and stromal cells with endothelial cells. Given the transience of hormonal signals within 3D biomaterials, the inclusion of sex hormone binding globulin (SHBG) to alter the bioavailability of estradiol within the hydrogel is reported, demonstrating a strategy to reduce diffusive losses via SHBG-mediated estradiol sequestration.
生物材料血管化仍然是组织工程领域的一个主要研究重点。子宫内膜细胞的生物材料培养被描述为一个为促血管生成生物材料设计提供信息的平台。在体内,子宫内膜在每个月经周期都会经历由雌二醇和孕酮介导的密集血管网络的快速生长和脱落。采用了封装在甲基丙烯酰胺功能化明胶水凝胶中的子宫内膜上皮细胞和基质细胞的共培养方法。据报道,促血管生成基因表达谱和血管内皮生长因子的产生在子宫内膜上皮细胞中是激素依赖性的,但激素信号对人端粒酶逆转录酶(hTERT)永生化的子宫内膜基质细胞没有影响。这项研究随后检查了上皮细胞反应的程度是否足以诱导人脐静脉内皮细胞网络形成的变化。子宫内膜基质细胞的加入改善了血管形成,但与子宫内膜上皮细胞共培养导致血管形成减少,这表明需要将子宫内膜上皮细胞和基质细胞与内皮细胞进行分层共培养。鉴于三维生物材料中激素信号的短暂性,有报道称加入性激素结合球蛋白(SHBG)以改变水凝胶中雌二醇的生物利用度,这展示了一种通过SHBG介导的雌二醇螯合来减少扩散损失的策略。