Suppr超能文献

后基因组时代的小麦遗传资源:前景与挑战。

Wheat genetic resources in the post-genomics era: promise and challenges.

机构信息

International Maize and Wheat Improvement Center (CIMMYT), c/o Chinese Academy of Agricultural Sciences (CAAS), China.

Institute of Crop Sciences, CAAS, China.

出版信息

Ann Bot. 2018 Mar 14;121(4):603-616. doi: 10.1093/aob/mcx148.

Abstract

BACKGROUND

Wheat genetic resources have been used for genetic improvement since 1876, when Stephen Wilson (Transactions and Proceedings of the Botanical Society of Edinburgh 12: 286) consciously made the first wide hybrid involving wheat and rye in Scotland. Wide crossing continued with sporadic attempts in the first half of 19th century and became a sophisticated scientific discipline during the last few decades with considerable impact in farmers' fields. However, a large diversity of untapped genetic resources could contribute in meeting future wheat production challenges.

PERSPECTIVES AND CONCLUSION

Recently the complete reference genome of hexaploid (Chinese Spring) and tetraploid (Triticum turgidum ssp. dicoccoides) wheat became publicly available coupled with on-going international efforts on wheat pan-genome sequencing. We anticipate that an objective appraisal is required in the post-genomics era to prioritize genetic resources for use in the improvement of wheat production if the goal of doubling yield by 2050 is to be met. Advances in genomics have resulted in the development of high-throughput genotyping arrays, improved and efficient methods of gene discovery, genomics-assisted selection and gene editing using endonucleases. Likewise, ongoing advances in rapid generation turnover, improved phenotyping, envirotyping and analytical methods will significantly accelerate exploitation of exotic genes and increase the rate of genetic gain in breeding. We argue that the integration of these advances will significantly improve the precision and targeted identification of potentially useful variation in the wild relatives of wheat, providing new opportunities to contribute to yield and quality improvement, tolerance to abiotic stresses, resistance to emerging biotic stresses and resilience to weather extremes.

摘要

背景

自 1876 年斯蒂芬·威尔逊(Stephen Wilson)在苏格兰有意识地进行了首次涉及小麦和黑麦的广泛杂交以来,小麦遗传资源一直被用于遗传改良,当时他在《爱丁堡植物学会会报和论文集》(Transactions and Proceedings of the Botanical Society of Edinburgh)第 12 卷中发表了题为“286”的文章。19 世纪上半叶,广泛杂交时有发生,但在过去几十年中,它已成为一门复杂的科学学科,在农民的田间产生了相当大的影响。然而,大量未开发的遗传资源可能有助于应对未来的小麦生产挑战。

观点与结论

最近,六倍体(中国春)和四倍体(普通小麦硬粒亚种)小麦的完整参考基因组已公开,同时正在进行国际小麦泛基因组测序工作。我们预计,在后基因组时代,如果要实现到 2050 年将产量提高一倍的目标,就需要对遗传资源进行客观评估,以便优先用于提高小麦产量。基因组学的进步导致了高通量基因分型阵列的发展、基因发现、基因组辅助选择和使用内切酶进行基因编辑的改进和高效方法的发展。同样,快速世代更替、改进的表型鉴定、环境鉴定和分析方法的持续进展将大大加快对异源基因的利用,并提高育种中的遗传增益率。我们认为,这些进展的结合将显著提高小麦野生近缘种中潜在有用变异的精确性和靶向识别能力,为提高产量和品质、提高对非生物胁迫的耐受性、抵御新出现的生物胁迫以及提高对极端天气的适应能力提供新的机会。

相似文献

5
Bread wheat: a role model for plant domestication and breeding.面包小麦:植物驯化和育种的典范。
Hereditas. 2019 May 29;156:16. doi: 10.1186/s41065-019-0093-9. eCollection 2019.
7
Wheat genomic study for genetic improvement of traits in China.中国小麦基因组研究助力性状遗传改良
Sci China Life Sci. 2022 Sep;65(9):1718-1775. doi: 10.1007/s11427-022-2178-7. Epub 2022 Aug 24.

引用本文的文献

本文引用的文献

10
Wheat Landrace Genome Diversity.小麦地方品种基因组多样性
Genetics. 2017 Apr;205(4):1657-1676. doi: 10.1534/genetics.116.194688. Epub 2017 Feb 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验