Suppr超能文献

应用基因组学和表型组学的最新进展在多倍体小麦中发现性状。

Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat.

机构信息

School of Biosciences, The University of Birmingham, Birmingham, B15 2TT, UK.

John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.

出版信息

Plant J. 2019 Jan;97(1):56-72. doi: 10.1111/tpj.14150. Epub 2018 Dec 19.

Abstract

Improving traits in wheat has historically been challenging due to its large and polyploid genome, limited genetic diversity and in-field phenotyping constraints. However, within recent years many of these barriers have been lowered. The availability of a chromosome-level assembly of the wheat genome now facilitates a step-change in wheat genetics and provides a common platform for resources, including variation data, gene expression data and genetic markers. The development of sequenced mutant populations and gene-editing techniques now enables the rapid assessment of gene function in wheat directly. The ability to alter gene function in a targeted manner will unmask the effects of homoeolog redundancy and allow the hidden potential of this polyploid genome to be discovered. New techniques to identify and exploit the genetic diversity within wheat wild relatives now enable wheat breeders to take advantage of these additional sources of variation to address challenges facing food production. Finally, advances in phenomics have unlocked rapid screening of populations for many traits of interest both in greenhouses and in the field. Looking forwards, integrating diverse data types, including genomic, epigenetic and phenomics data, will take advantage of big data approaches including machine learning to understand trait biology in wheat in unprecedented detail.

摘要

由于小麦基因组庞大且为多倍体、遗传多样性有限以及田间表型鉴定受限,其性状改良在过去一直具有挑战性。然而,近年来,许多这些障碍已经被降低。小麦基因组的染色体水平组装的出现,为小麦遗传学带来了重大变革,并为包括变异数据、基因表达数据和遗传标记在内的资源提供了一个通用平台。已测序的突变体群体的发展和基因编辑技术的出现,使得能够直接快速评估小麦中基因的功能。以靶向方式改变基因功能的能力将揭示同系基因冗余的影响,并揭示这个多倍体基因组的隐藏潜力。现在,识别和利用小麦野生近缘种内遗传多样性的新技术使小麦育种家能够利用这些额外的变异来源来应对粮食生产所面临的挑战。最后,表型组学的进步使得能够在温室和田间快速筛选许多感兴趣的性状的群体。展望未来,整合包括基因组、表观基因组和表型组学数据在内的多种数据类型,将利用包括机器学习在内的大数据方法来以前所未有的细节理解小麦性状的生物学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/888f/6378701/4ecc3f150742/TPJ-97-56-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验