Developmental Imaging, Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia.
Department of Paediatrics, University of Melbourne, Melbourne, Australia.
Sci Rep. 2017 Dec 19;7(1):17796. doi: 10.1038/s41598-017-18253-6.
Brain development is a dynamic process with tissue-specific alterations that reflect complex and ongoing biological processes taking place during childhood and adolescence. Accurate identification and modelling of these anatomical processes in vivo with MRI may provide clinically useful imaging markers of individual variability in development. In this study, we use manifold learning to build a model of age- and sex-related anatomical variation using multiple magnetic resonance imaging metrics. Using publicly available data from a large paediatric cohort (n = 768), we apply a multi-metric machine learning approach combining measures of tissue volume, cortical area and cortical thickness into a low-dimensional data representation. We find that neuroanatomical variation due to age and sex can be captured by two orthogonal patterns of brain development and we use this model to simultaneously predict age with a mean error of 1.5-1.6 years and sex with an accuracy of 81%. We validate this model in an independent developmental cohort. We present a framework for modelling anatomical development during childhood using manifold embedding. This model accurately predicts age and sex based on image-derived markers of cerebral morphology and generalises well to independent populations.
大脑发育是一个动态的过程,组织特异性的改变反映了儿童期和青春期发生的复杂和持续的生物学过程。使用 MRI 对这些体内解剖过程进行准确的识别和建模,可能为发育过程中的个体差异提供有临床价值的影像学标志物。在这项研究中,我们使用流形学习,使用多个磁共振成像指标构建一个与年龄和性别相关的解剖变异模型。我们使用来自大型儿科队列的公开数据(n=768),将组织体积、皮质面积和皮质厚度的测量值组合到一个低维数据表示中,应用一种多指标机器学习方法。我们发现,年龄和性别引起的神经解剖变异可以用两个正交的大脑发育模式来捕捉,我们使用该模型来同时预测年龄,平均误差为 1.5-1.6 年,性别预测准确率为 81%。我们在一个独立的发育队列中验证了该模型。我们提出了一个使用流形嵌入来模拟儿童期大脑发育的框架。该模型基于脑形态的图像衍生标志物准确预测年龄和性别,并且可以很好地推广到独立的人群。