Suppr超能文献

一种基于皮质解剖学指标预测脑龄的自动化机器学习方法。

An automated machine learning approach to predict brain age from cortical anatomical measures.

机构信息

Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.

出版信息

Hum Brain Mapp. 2020 Sep;41(13):3555-3566. doi: 10.1002/hbm.25028. Epub 2020 May 16.

Abstract

The use of machine learning (ML) algorithms has significantly increased in neuroscience. However, from the vast extent of possible ML algorithms, which one is the optimal model to predict the target variable? What are the hyperparameters for such a model? Given the plethora of possible answers to these questions, in the last years, automated ML (autoML) has been gaining attention. Here, we apply an autoML library called Tree-based Pipeline Optimisation Tool (TPOT) which uses a tree-based representation of ML pipelines and conducts a genetic programming-based approach to find the model and its hyperparameters that more closely predicts the subject's true age. To explore autoML and evaluate its efficacy within neuroimaging data sets, we chose a problem that has been the focus of previous extensive study: brain age prediction. Without any prior knowledge, TPOT was able to scan through the model space and create pipelines that outperformed the state-of-the-art accuracy for Freesurfer-based models using only thickness and volume information for anatomical structure. In particular, we compared the performance of TPOT (mean absolute error [MAE]: 4.612 ± .124 years) and a relevance vector regression (MAE 5.474 ± .140 years). TPOT also suggested interesting combinations of models that do not match the current most used models for brain prediction but generalise well to unseen data. AutoML showed promising results as a data-driven approach to find optimal models for neuroimaging applications.

摘要

机器学习(ML)算法在神经科学中的应用显著增加。然而,在众多可能的 ML 算法中,哪一个是预测目标变量的最优模型?这种模型的超参数是什么?鉴于这些问题有很多可能的答案,近年来,自动化机器学习(autoML)越来越受到关注。在这里,我们应用了一个名为基于树的管道优化工具(TPOT)的 autoML 库,它使用基于树的 ML 管道表示,并采用基于遗传编程的方法来找到更准确预测受试者真实年龄的模型及其超参数。为了探索 autoML 并评估其在神经影像学数据集内的效果,我们选择了一个以前广泛研究的问题:大脑年龄预测。在没有任何先验知识的情况下,TPOT 能够在模型空间中进行扫描,并创建管道,这些管道仅使用厚度和体积信息来对解剖结构进行分析,其性能优于 Freesurfer 模型的最新精度。特别是,我们比较了 TPOT(平均绝对误差 [MAE]:4.612 ±.124 岁)和相关向量回归(MAE 5.474 ±.140 岁)的性能。TPOT 还提出了一些有趣的模型组合,这些组合与当前用于大脑预测的最常用模型不匹配,但可以很好地推广到未见数据。作为一种数据驱动的方法,autoML 为神经影像学应用找到最优模型显示出了有前景的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b6d/7416036/54c339cfc898/HBM-41-3555-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验