Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI, 96822, USA.
Appl Microbiol Biotechnol. 2018 Feb;102(3):1331-1342. doi: 10.1007/s00253-017-8701-y. Epub 2017 Dec 23.
In this study, extended artificial scaffoldins possessing multiple cohesin modules were created in vivo by employing split-intein-mediated protein ligation. Artificial scaffoldins having one Clostridium thermocellum cohesin (Coh), one carbohydrate binding module (CBM) from Clostridium cellulolyticum scaffolding protein CipC, and one to five cohesins (Coh) derived from CipC, were assembled. These scaffoldins were used to assemble cellulosomal enzyme complexes for investigating the interplay among endoglucanase, exoglucanase, and scaffoldin-borne CBM, on the hydrolysis of a model microcrystalline cellulose substrate, Avicel. The cellulosomal complexes were assembled in vitro by incubating recombinant C. thermocellum endoglucanase (A) and C. cellulolyticum exoglucanase (E), with the various artificial scaffoldins. Under a fixed total cellulase concentration, improved hydrolysis is noted by recruiting both E and A on the same scaffoldin, for all scaffoldins tested, compared with free cellulases. The improvement is more profound with scaffoldins having a higher Coh/Coh ratio (i.e., increased E/A ratio). Furthermore, among scaffoldins having the same Coh/Coh ratio, highest rates of Avicel hydrolysis are noted when Coh, and hence an endoglucanase, is situated next to the CBM and not flanked by Coh. These results point to the importance of using scaffoldins with sufficiently high numbers of cohesin units to achieve an optimal exo-/endo-glucanase ratio to create efficient designer cellulosomes. Furthermore, intein-trans-splicing is proven here to be an effective method for assembling complex scaffoldins and more intricate cellulosomes.
在这项研究中,通过采用分裂内含肽介导的蛋白质连接,在体内创建了具有多个粘着模块的扩展人工支架。人工支架具有一个梭菌热纤维梭菌粘着蛋白(Coh),一个来源于梭菌纤维分解菌支架蛋白 CipC 的碳水化合物结合模块(CBM),和一个至五个来源于 CipC 的粘着蛋白(Coh)。这些支架用于组装纤维酶复合物,以研究内切葡聚糖酶、外切葡聚糖酶和支架上携带的 CBM 之间的相互作用,在水解模型微晶纤维素底物 Avicel 上。纤维酶复合物通过在固定的总纤维素酶浓度下,用各种人工支架孵育重组的梭菌内切葡聚糖酶(A)和梭菌纤维分解菌外切葡聚糖酶(E)在体外组装。与游离纤维素酶相比,所有测试的支架中,通过在同一支架上招募 E 和 A,注意到水解的改进。具有更高的 Coh/Coh 比(即增加的 E/A 比)的支架的改进更为明显。此外,在具有相同的 Coh/Coh 比的支架中,当 Coh,即内切葡聚糖酶,位于 CBM 旁边而不是由 Coh 包围时,Avicel 水解的速率最高。这些结果表明,使用具有足够高数量的粘着单元的支架来达到最佳的外切酶/内切酶比以创建高效的设计纤维素酶是很重要的。此外,这里证明了内含肽转剪接是组装复杂支架和更复杂的纤维酶的有效方法。