Suppr超能文献

通过磷酸水解优化纤维素纳米晶体的长度和表面电荷密度

Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis.

作者信息

Vanderfleet Oriana M, Osorio Daniel A, Cranston Emily D

机构信息

Chemical Engineering Department, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8.

Materials Science and Engineering Department, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L8.

出版信息

Philos Trans A Math Phys Eng Sci. 2018 Feb 13;376(2112). doi: 10.1098/rsta.2017.0041.

Abstract

Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238-475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes 'design rules' for CNCs with improved size uniformity and charge density.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.

摘要

纤维素纳米晶体(CNCs)是一类新兴的纳米材料,具有广泛的潜在应用。CNCs通常通过用硫酸进行酸水解来制备;然而,磷酸具有生成热稳定性更高的CNCs的优势。本文提出了一种实验设计方法,用于优化用磷酸从棉花中水解制备CNCs的过程。在九个实验中改变了水解时间、温度和酸浓度,并应用线性最小二乘回归分析来了解这些参数对CNCs性能的影响。除了一种情况外,在所有实验中都制备出了具有高度结晶度和热稳定性的棒状纳米颗粒。生成了一个统计模型来预测CNCs的长度,并阐明了磷酸盐含量和zeta电位的趋势。CNCs的长度可以在相对较大的范围内调节(238 - 475nm),并且通过提高水解温度和酸浓度可以最有效地缩小多分散性。CNCs的磷酸盐含量受水解温度和时间的影响最大;然而,与硫酸水解的CNCs相比,其电荷密度和胶体稳定性被认为较低。本研究深入了解了弱酸水解,并提出了具有改进的尺寸均匀性和电荷密度的CNCs的“设计规则”。本文是“纤维素纳米技术的新视野”讨论会议特刊的一部分。

相似文献

1
Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis.
Philos Trans A Math Phys Eng Sci. 2018 Feb 13;376(2112). doi: 10.1098/rsta.2017.0041.
2
Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter.
Int J Biol Macromol. 2019 Sep 15;137:374-381. doi: 10.1016/j.ijbiomac.2019.06.241. Epub 2019 Jul 1.
4
Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents.
Biomacromolecules. 2013 Sep 9;14(9):3278-84. doi: 10.1021/bm400879x. Epub 2013 Aug 16.
5
Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions.
Int J Biol Macromol. 2019 Apr 1;126:496-506. doi: 10.1016/j.ijbiomac.2018.12.202. Epub 2018 Dec 26.
6
Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production.
Langmuir. 2017 Feb 21;33(7):1583-1598. doi: 10.1021/acs.langmuir.6b03765. Epub 2016 Dec 13.
7
A comparative study on the preparation and characterization of cellulose nanocrystals with various polymorphs.
Carbohydr Polym. 2018 Sep 1;195:18-28. doi: 10.1016/j.carbpol.2018.04.039. Epub 2018 Apr 12.
8
Isolation and characterization of cellulose nanocrystals from pueraria root residue.
Int J Biol Macromol. 2019 May 15;129:1081-1089. doi: 10.1016/j.ijbiomac.2018.07.055. Epub 2018 Aug 31.
9
Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis.
Heliyon. 2020 Nov 11;6(11):e05486. doi: 10.1016/j.heliyon.2020.e05486. eCollection 2020 Nov.
10
Cellulose Nanocrystals (CNCs) from Corn Stalk: Activation Energy Analysis.
Materials (Basel). 2017 Jan 20;10(1):80. doi: 10.3390/ma10010080.

引用本文的文献

3
Subcritical water digestion of woody biomass: extraction of cellulose nanomaterials under acid-lean condition.
Nanoscale Adv. 2024 Jun 13;6(15):3923-3933. doi: 10.1039/d4na00108g. eCollection 2024 Jul 23.
6
Structural Color from Cellulose Nanocrystals or Chitin Nanocrystals: Self-Assembly, Optics, and Applications.
Chem Rev. 2023 Dec 13;123(23):12595-12756. doi: 10.1021/acs.chemrev.2c00836. Epub 2023 Nov 27.
7
A ternary eutectic solvent for cellulose nanocrystal production: exploring the recyclability and pre-pilot scale-up.
Front Chem. 2023 Aug 25;11:1233889. doi: 10.3389/fchem.2023.1233889. eCollection 2023.
8
Efficient Isolation Method for Highly Charged Phosphorylated Cellulose Nanocrystals.
Biomacromolecules. 2023 Mar 13;24(3):1318-1328. doi: 10.1021/acs.biomac.2c01363. Epub 2023 Feb 7.
9
Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset.
Chem Rev. 2023 Mar 8;123(5):1925-2015. doi: 10.1021/acs.chemrev.2c00611. Epub 2023 Feb 1.
10
Spatioselective surface chemistry for the production of functional and chemically anisotropic nanocellulose colloids.
J Mater Chem A Mater. 2022 Nov 3;10(44):23413-23432. doi: 10.1039/d2ta05277f. eCollection 2022 Nov 15.

本文引用的文献

1
Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production.
Langmuir. 2017 Feb 21;33(7):1583-1598. doi: 10.1021/acs.langmuir.6b03765. Epub 2016 Dec 13.
2
DLS and zeta potential - What they are and what they are not?
J Control Release. 2016 Aug 10;235:337-351. doi: 10.1016/j.jconrel.2016.06.017. Epub 2016 Jun 10.
3
Correlating Cellulose Nanocrystal Particle Size and Surface Area.
Langmuir. 2016 Jun 21;32(24):6105-14. doi: 10.1021/acs.langmuir.6b01376. Epub 2016 Jun 8.
4
Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials.
Biomacromolecules. 2015 Oct 12;16(10):3399-410. doi: 10.1021/acs.biomac.5b01117. Epub 2015 Sep 30.
8
Phosphorylation of Kraft fibers with phosphate esters.
Carbohydr Polym. 2014 Jun 15;106:121-7. doi: 10.1016/j.carbpol.2014.01.070. Epub 2014 Jan 31.
9
Key advances in the chemical modification of nanocelluloses.
Chem Soc Rev. 2014 Mar 7;43(5):1519-42. doi: 10.1039/c3cs60204d. Epub 2013 Dec 9.
10
Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis.
Biomacromolecules. 2013 Apr 8;14(4):1223-30. doi: 10.1021/bm400219u. Epub 2013 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验