Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA 94305;
Division of Epidemiology, Stanford University School of Medicine, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):E584-E591. doi: 10.1073/pnas.1708729114. Epub 2018 Jan 4.
Schistosomiasis is a parasitic disease that affects over 240 million people globally. To improve population-level disease control, there is growing interest in adding chemical-based snail control interventions to interrupt the lifecycle of in its snail host to reduce parasite transmission. However, this approach is not widely implemented, and given environmental concerns, the optimal conditions for when snail control is appropriate are unclear. We assessed the potential impact and cost-effectiveness of various snail control strategies. We extended previously published dynamic, age-structured transmission and cost-effectiveness models to simulate mass drug administration (MDA) and focal snail control interventions against across a range of low-prevalence (5-20%) and high-prevalence (25-50%) rural Kenyan communities. We simulated strategies over a 10-year period of MDA targeting school children or entire communities, snail control, and combined strategies. We measured incremental cost-effectiveness in 2016 US dollars per disability-adjusted life year and defined a strategy as optimally cost-effective when maximizing health gains (averted disability-adjusted life years) with an incremental cost-effectiveness below a Kenya-specific economic threshold. In both low- and high-prevalence settings, community-wide MDA with additional snail control reduced total disability by an additional 40% compared with school-based MDA alone. The optimally cost-effective scenario included the addition of snail control to MDA in over 95% of simulations. These results support inclusion of snail control in global guidelines and national schistosomiasis control strategies for optimal disease control, especially in settings with high prevalence, "hot spots" of transmission, and noncompliance to MDA.
血吸虫病是一种寄生虫病,影响着全球超过 2.4 亿人。为了改善人群层面的疾病控制,人们越来越感兴趣地将基于化学的钉螺控制干预措施纳入其中,以中断其在钉螺宿主中的生命周期,从而减少寄生虫传播。然而,这种方法并未得到广泛实施,而且考虑到环境问题,尚不清楚何时进行钉螺控制才是最合适的。我们评估了各种钉螺控制策略的潜在影响和成本效益。我们扩展了以前发表的动态、年龄结构传播和成本效益模型,以模拟大规模药物管理 (MDA) 和针对 的局部钉螺控制干预措施,这些干预措施在一系列低流行率(5-20%)和高流行率(25-50%)的肯尼亚农村社区中进行。我们在 10 年的时间内模拟了针对学童或整个社区的 MDA、钉螺控制以及综合策略。我们以每残疾调整生命年 2016 年美元衡量增量成本效益,并将以低于肯尼亚特定经济阈值的增量成本效益最大化健康收益(避免的残疾调整生命年)的策略定义为最佳成本效益。在低流行率和高流行率环境中,与仅针对学校的 MDA 相比,社区范围的 MDA 加额外的钉螺控制可使总残疾减少 40%。最佳成本效益的情景包括在超过 95%的模拟中,将钉螺控制纳入 MDA。这些结果支持将钉螺控制纳入全球指南和国家血吸虫病控制策略,以实现最佳疾病控制,尤其是在高流行率、传播“热点”和 MDA 不遵守的情况下。