Francis Ryan M, Kopyeva Irina, Lai Nicholas, Yang Shiyu, Filteau Jeremy R, Wang Xinru, Baker David, DeForest Cole A
Department of Chemical Engineering, University of Washington, Seattle, Washington, USA.
Department of Bioengineering, University of Washington, Seattle, Washington, USA.
J Biomed Mater Res A. 2025 Apr;113(4):e37897. doi: 10.1002/jbm.a.37897.
Hydrogels are an important class of biomaterials that permit cells to be cultured and studied within engineered microenvironments of user-defined physical and chemical properties. Though conventional 3D extrusion and stereolithographic (SLA) printing readily enable homogeneous and multimaterial hydrogels to be formed with specific macroscopic geometries, strategies that further afford spatiotemporal customization of the underlying gel physicochemistry in a non-discrete manner would be profoundly useful toward recapitulating the complexity of native tissue in vitro. Here, we demonstrate that grayscale control over local biomaterial biochemistry and mechanics can be rapidly achieved across large constructs using an inexpensive (~$300) and commercially available liquid crystal display (LCD)-based printer. Template grayscale images are first processed into a "height-extruded" 3D object, which is then printed on a standard LCD printer with an immobile build head. As the local height of the 3D object corresponds to the final light dosage delivered at the corresponding xy-coordinate, this method provides a route toward spatially specifying the extent of various dosage-dependent and biomaterial, forming/modifying photochemistries. Demonstrating the utility of this approach, we photopattern the grayscale polymerization of poly(ethylene glycol) (PEG) diacrylate gels, biochemical functionalization of agarose- and PEG-based gels via oxime ligation, and the controlled 2D adhesion and 3D growth of cells in response to a de novo-designed α5β1-modulating protein via thiol-norbornene click chemistry. Owing to the method's low cost, simple implementation, and high compatibility with many biomaterial photochemistries, we expect this strategy will prove useful toward fundamental biological studies and functional tissue engineering alike.
水凝胶是一类重要的生物材料,它能使细胞在具有用户定义物理和化学性质的工程微环境中进行培养和研究。尽管传统的3D挤出和立体光刻(SLA)打印能够轻松地形成具有特定宏观几何形状的均匀和多材料水凝胶,但以非离散方式进一步实现对底层凝胶物理化学的时空定制的策略,对于在体外重现天然组织的复杂性将非常有用。在这里,我们证明,使用一台价格低廉(约300美元)且市售的基于液晶显示器(LCD)的打印机,可以在大型构建体上快速实现对局部生物材料生物化学和力学的灰度控制。模板灰度图像首先被处理成一个“高度挤出”的3D物体,然后在一个固定打印头的标准LCD打印机上进行打印。由于3D物体的局部高度对应于在相应xy坐标处最终传递的光剂量,这种方法提供了一条在空间上指定各种剂量依赖性和生物材料形成/改性光化学程度的途径。为了证明这种方法的实用性,我们对聚(乙二醇)(PEG)二丙烯酸酯凝胶的灰度聚合进行了光图案化,通过肟连接对基于琼脂糖和PEG的凝胶进行了生化功能化,并通过硫醇-降冰片烯点击化学,实现了对一种新设计的α5β1调节蛋白响应的细胞的可控二维粘附和三维生长。由于该方法成本低、实施简单且与许多生物材料光化学具有高度兼容性,我们预计这种策略将对基础生物学研究和功能性组织工程都有用。