Lake Brenden M, Lawrence Neil D, Tenenbaum Joshua B
Center for Data Science, New York University.
Department of Psychology, New York University.
Cogn Sci. 2018 Jun;42 Suppl 3:809-832. doi: 10.1111/cogs.12580. Epub 2018 Jan 9.
Both scientists and children make important structural discoveries, yet their computational underpinnings are not well understood. Structure discovery has previously been formalized as probabilistic inference about the right structural form-where form could be a tree, ring, chain, grid, etc. (Kemp & Tenenbaum, 2008). Although this approach can learn intuitive organizations, including a tree for animals and a ring for the color circle, it assumes a strong inductive bias that considers only these particular forms, and each form is explicitly provided as initial knowledge. Here we introduce a new computational model of how organizing structure can be discovered, utilizing a broad hypothesis space with a preference for sparse connectivity. Given that the inductive bias is more general, the model's initial knowledge shows little qualitative resemblance to some of the discoveries it supports. As a consequence, the model can also learn complex structures for domains that lack intuitive description, as well as predict human property induction judgments without explicit structural forms. By allowing form to emerge from sparsity, our approach clarifies how both the richness and flexibility of human conceptual organization can coexist.
科学家和儿童都会做出重要的结构发现,但它们的计算基础却尚未得到很好的理解。结构发现此前已被形式化为关于正确结构形式的概率推理——其中形式可以是树状、环状、链状、网格状等(肯普和特南鲍姆,2008)。虽然这种方法可以学习直观的组织形式,包括动物的树状结构和颜色环的环状结构,但它假定了一种强烈的归纳偏差,只考虑这些特定的形式,并且每种形式都作为初始知识被明确提供。在这里,我们引入了一种关于如何发现组织结构的新计算模型,该模型利用了具有稀疏连接偏好的广泛假设空间。鉴于归纳偏差更为普遍,该模型的初始知识与它所支持的一些发现几乎没有定性上的相似之处。因此,该模型还可以为缺乏直观描述的领域学习复杂结构,以及在没有明确结构形式的情况下预测人类属性归纳判断。通过允许形式从稀疏性中出现,我们的方法阐明了人类概念组织的丰富性和灵活性是如何共存的。