Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.
Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA.
Adv Mater. 2018 Feb;30(7). doi: 10.1002/adma.201704401. Epub 2018 Jan 8.
Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm V s with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications.
当安装在动态变化的软物质表面上时,具有抗机械影响的可变形电子设备在下一代可植入生物电子设备中有很大的潜力。在这里,提出了由单个有机纳米线(NW)作为半导体组成的可变形场效应晶体管(FET)。NW 由融合噻吩二酮吡咯并吡咯基聚合物半导体和高分子量聚氧化乙烯组成,既是分子结合剂又是可变形增强剂。所获得的晶体管在聚(偏二氟乙烯-共-三氟乙烯)聚合物电介质中表现出>8cm V s 的高场效应迁移率,并且可以很容易地通过施加应变(拉伸和压缩应变均为 100%)来变形。通过形成 NW 的蛇形结构,可以显着提高 NW 的电可靠性和机械耐久性。值得注意的是,完全可变形的 NW FET 可以在附着在其上的橡胶气球的表面上承受 3D 体积变化(>1700%并恢复到原始状态),同时保持恒定电流输出。在机械动态软物质表面上,例如模仿心跳的脉动气球(脉动率:40min(0.67Hz)和 40%体积膨胀),变形晶体管可以稳健地运行而不会出现明显的退化,这凸显了其在未来生物医学应用中的潜力。