Yamauchi Kevin A, Herr Amy E
Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
The UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley, CA 94720, USA.
Microsyst Nanoeng. 2017;3. doi: 10.1038/micronano.2016.79. Epub 2017 Feb 13.
Although immunoassays are the standard for determining subcellular protein localization in individual cells, antibody probe cross-reactivity and fixation artifacts remain confounding factors. To enhance selectivity while providing single-cell resolution, we introduce a subcellular western blotting technique capable of separately assaying proteins in the 14 pL cytoplasm and 2 pL nucleus of individual cells. To confer precision fluidic control, we describe a passive multilayer microdevice that leverages the rapid transport times afforded by miniaturization. After isolating single cells in microwells, we apply single-cell differential detergent fractionation to lyse and western blot the cytoplasmic lysate, whereas the nucleus remains intact in the microwell. Subsequently, we lyse the intact nucleus and western blot the nuclear lysate. To index each protein analysis to the originating subcellular compartment, we utilize bi-directional electrophoresis, a multidimensional separation that assays the lysate from each compartment in a distinct region of the separation axis. Single-cell bi-directional electrophoresis eliminates the need for semi-subjective image segmentation algorithms required in immunocytochemistry. The subcellular, single-cell western blot is demonstrated for six targets per cell, and successfully localizes spliceosome-associated proteins solubilized from large protein and RNA complexes, even for closely sized proteins (a 7 kDa difference). Measurement of NF-κB translocation dynamics in unfixed cells at 15-min intervals demonstrates reduced technical variance compared with immunofluorescence. This chemical cytometry assay directly measures the nucleocytoplasmic protein distribution in individual unfixed cells, thus providing insight into protein signaling in heterogeneous cell populations.
尽管免疫测定法是确定单个细胞中亚细胞蛋白质定位的标准方法,但抗体探针交叉反应性和固定假象仍然是混杂因素。为了提高选择性并提供单细胞分辨率,我们引入了一种亚细胞蛋白质印迹技术,该技术能够分别检测单个细胞14 pL细胞质和2 pL细胞核中的蛋白质。为了实现精确的流体控制,我们描述了一种被动多层微器件,它利用了小型化带来的快速传输时间。在微孔中分离出单个细胞后,我们应用单细胞差异去污剂分级分离法来裂解并对细胞质裂解物进行蛋白质印迹,而细胞核则在微孔中保持完整。随后,我们裂解完整的细胞核并对细胞核裂解物进行蛋白质印迹。为了将每个蛋白质分析与起始亚细胞区室相关联,我们利用双向电泳,这是一种多维分离方法,可在分离轴的不同区域检测每个区室的裂解物。单细胞双向电泳消除了免疫细胞化学中所需的半主观图像分割算法。每个细胞对六个靶标进行了亚细胞单细胞蛋白质印迹演示,并成功定位了从大蛋白质和RNA复合物中溶解的剪接体相关蛋白质,即使是大小相近的蛋白质(相差7 kDa)。以15分钟的间隔测量未固定细胞中NF-κB的转位动力学,结果表明与免疫荧光相比,技术差异有所降低。这种化学细胞术测定法直接测量单个未固定细胞中的核质蛋白质分布,从而深入了解异质细胞群体中的蛋白质信号传导。