King Andy J, O'Hara John P, Morrison Douglas J, Preston Tom, King Roderick F G J
Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom.
Scottish Universities Environmental Research Centre, East Kilbride, United Kingdom.
Physiol Rep. 2018 Jan;6(1). doi: 10.14814/phy2.13555.
This study investigated the effect of carbohydrate (CHO) dose and composition on fuel selection during exercise, specifically exogenous and endogenous (liver and muscle) CHO oxidation. Ten trained males cycled in a double-blind randomized order on 5 occasions at 77% V˙O2max for 2 h, followed by a 30-min time-trial (TT) while ingesting either 60 g·h (LG) or 75 g·h C-glucose (HG), 90 g·h (LGF) or 112.5 g·h C-glucose- C-fructose ([2:1] HGF) or placebo. CHO doses met or exceed reported intestinal transporter saturation for glucose and fructose. Indirect calorimetry and stable mass isotope [ C] tracer techniques were utilized to determine fuel use. TT performance was 93% "likely/probable" to be improved with LGF compared with the other CHO doses. Exogenous CHO oxidation was higher for LGF and HGF compared with LG and HG (ES > 1.34, P < 0.01), with the relative contribution of LGF (24.5 ± 5.3%) moderately higher than HGF (20.6 ± 6.2%, ES = 0.68). Increasing CHO dose beyond intestinal saturation increased absolute (29.2 ± 28.6 g·h , ES = 1.28, P = 0.06) and relative muscle glycogen utilization (9.2 ± 6.9%, ES = 1.68, P = 0.014) for glucose-fructose ingestion. Absolute muscle glycogen oxidation between LG and HG was not significantly different, but was moderately higher for HG (ES = 0.60). Liver glycogen oxidation was not significantly different between conditions, but absolute and relative contributions were moderately attenuated for LGF (19.3 ± 9.4 g·h , 6.8 ± 3.1%) compared with HGF (30.5 ± 17.7 g·h , 10.1 ± 4.0%, ES = 0.79 & 0.98). Total fat oxidation was suppressed in HGF compared with all other CHO conditions (ES > 0.90, P = 0.024-0.17). In conclusion, there was no linear dose response for CHO ingestion, with 90 g·h of glucose-fructose being optimal in terms of TT performance and fuel selection.
本研究调查了碳水化合物(CHO)剂量和组成对运动期间燃料选择的影响,特别是外源性和内源性(肝脏和肌肉)CHO氧化。十名受过训练的男性以双盲随机顺序进行了5次骑行,在77%最大摄氧量(V˙O2max)下骑行2小时,随后进行30分钟的计时赛(TT),同时摄入60 g·h(LG)或75 g·h的葡萄糖(HG)、90 g·h(LGF)或112.5 g·h的葡萄糖-果糖([2:1] HGF)或安慰剂。CHO剂量达到或超过了报道的葡萄糖和果糖肠道转运体饱和度。采用间接量热法和稳定质量同位素[ C]示踪技术来确定燃料使用情况。与其他CHO剂量相比,LGF使TT成绩“很可能/有可能”提高93%。与LG和HG相比,LGF和HGF的外源性CHO氧化更高(效应量>1.34,P<0.01),LGF的相对贡献(24.5±5.3%)略高于HGF(20.6±6.2%,效应量=0.68)。超过肠道饱和度增加CHO剂量会增加葡萄糖-果糖摄入时的绝对(29.2±28.6 g·h,效应量=1.28,P=0.06)和相对肌肉糖原利用率(9.2±6.9%,效应量=1.68,P=0.014)。LG和HG之间的绝对肌肉糖原氧化没有显著差异,但HG略高(效应量=0.60)。不同条件下肝脏糖原氧化没有显著差异,但与HGF(30.5±17.7 g·h,10.1±4.0%,效应量=0.79和0.98)相比,LGF的绝对和相对贡献略低(19.3±9.4 g·h,6.8±3.1%)。与所有其他CHO条件相比,HGF中的总脂肪氧化受到抑制(效应量>0.90,P=0.024 - 0.17)。总之,CHO摄入不存在线性剂量反应,就TT成绩和燃料选择而言,90 g·h的葡萄糖-果糖是最佳的。