Suppr超能文献

物种分布模型:存在模型与样方多度数据的对比。

Species Distribution Modelling: Contrasting presence-only models with plot abundance data.

机构信息

Coordenação de Botânica, Museu Paraense Emílio Goeldi, Av. Magalhães Barata 376, C.P. 399, Belém, PA, 66040-170, Brazil.

Programa de Pós-Graduação em Ciência Ambientais, Universidade Federal do Pará, Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil.

出版信息

Sci Rep. 2018 Jan 17;8(1):1003. doi: 10.1038/s41598-017-18927-1.

Abstract

Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species' area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.

摘要

物种分布模型 (SDMs) 在生态学和保护生物学中得到了广泛应用。由于其数量庞大且易于获取,基于存在数据的最大熵 (MaxEnt) 等存在-only SDM 经常使用自然历史收藏 (NHC)。然而,NHC 通常存在空间偏差,这可能会导致 SDM 产生不准确的结果。在这里,我们基于亚马逊树种的大型样地数据集,使用反距离权重 (IDW),测试了 NHC 分布和 MaxEnt 预测与基于空间丰度模型的关系。我们还提出了一种新的方法来处理 NHC 中的不一致性,并限制物种的实际占有面积。我们发现,66%的物种的 NHC 分布与 IDW 之间存在显著但较弱的正相关关系。95%的物种的 SDM 与 IDW 之间的关系也是显著的,但呈弱正相关,两种分析的敏感度都很高。此外,该方法还剔除了一半的 NHC 记录。对于没有后续检查就自动生成的存在-only SDM 应用程序,特别是在大型生物多样性评估项目中,应考虑到这一局限性。我们的方法提供了一个保守的物种实际占有面积估计值,其范围略大于物种的分布范围,与 IUCN 红色名录评估等方法兼容。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba5e/5772443/773aca0509fd/41598_2017_18927_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验