Physics Department E14, Technical University Munich, 85748 Garching, Germany.
Department of Chemistry, Ludwig-Maximilians University Munich, 81377 Munich, Germany.
Science. 2018 Jan 19;359(6373):296-301. doi: 10.1126/science.aao4284.
The use of dynamic, self-assembled DNA nanostructures in the context of nanorobotics requires fast and reliable actuation mechanisms. We therefore created a 55-nanometer-by-55-nanometer DNA-based molecular platform with an integrated robotic arm of length 25 nanometers, which can be extended to more than 400 nanometers and actuated with externally applied electrical fields. Precise, computer-controlled switching of the arm between arbitrary positions on the platform can be achieved within milliseconds, as demonstrated with single-pair Förster resonance energy transfer experiments and fluorescence microscopy. The arm can be used for electrically driven transport of molecules or nanoparticles over tens of nanometers, which is useful for the control of photonic and plasmonic processes. Application of piconewton forces by the robot arm is demonstrated in force-induced DNA duplex melting experiments.
在纳米机器人领域中使用动态、自组装 DNA 纳米结构需要快速可靠的驱动机制。因此,我们创建了一个 55 纳米乘 55 纳米的基于 DNA 的分子平台,该平台集成了长度为 25 纳米的机械臂,可以延伸到超过 400 纳米,并可以通过外部施加的电场进行驱动。通过单对 Förster 共振能量转移实验和荧光显微镜证明,在毫秒内可以精确、计算机控制地在平台上的任意位置之间切换臂,臂可以用于在数十纳米范围内驱动分子或纳米颗粒的电输送,这对于控制光子和等离激元过程很有用。通过机器人臂施加皮牛顿力的应用在力诱导 DNA 双链体熔解实验中得到了证明。