Technische Universität Berlin, Institut für Chemie , Sekr. PC14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
Langmuir. 2018 Feb 13;34(6):2373-2385. doi: 10.1021/acs.langmuir.7b04265. Epub 2018 Feb 1.
Antimicrobial peptides (AMPs) are the first line of defense after contact of an infectious invader, for example, bacterium or virus, with a host and an integral part of the innate immune system of humans. Their broad spectrum of biological functions ranges from cell membrane disruption over facilitation of chemotaxis to interaction with membrane-bound or intracellular receptors, thus providing novel strategies to overcome bacterial resistances. Especially, the clarification of the mechanisms and dynamics of AMP incorporation into bacterial membranes is of high interest, and different mechanistic models are still under discussion. In this work, we studied the incorporation of the peptaibol alamethicin (ALM) into tethered bilayer lipid membranes on electrodes in combination with surface-enhanced infrared absorption (SEIRA) spectroscopy. This approach allows monitoring the spontaneous and potential-induced ion channel formation of ALM in situ. The complex incorporation kinetics revealed a multistep mechanism that points to peptide-peptide interactions prior to penetrating the membrane and adopting the transmembrane configuration. On the basis of the anisotropy of the backbone amide I and II infrared absorptions determined by density functional theory calculations, we employed a mathematical model to evaluate ALM reorientations monitored by SEIRA spectroscopy. Accordingly, ALM was found to adopt inclination angles of ca. 69°-78° and 21° in its interfacially adsorbed and transmembrane incorporated states, respectively. These orientations can be stabilized efficiently by the dipolar interaction with lipid head groups or by the application of a potential gradient. The presented potential-controlled mechanistic study suggests an N-terminal integration of ALM into membranes as monomers or parallel oligomers to form ion channels composed of parallel-oriented helices, whereas antiparallel oligomers are barred from intrusion.
抗菌肽(AMPs)是宿主与细菌或病毒等传染性入侵物接触后的第一道防线,也是人类先天免疫系统的重要组成部分。其广泛的生物学功能包括破坏细胞膜、促进趋化作用以及与膜结合或细胞内受体相互作用等,为克服细菌耐药性提供了新的策略。特别是阐明 AMP 掺入细菌膜的机制和动力学具有重要意义,目前仍在讨论不同的机制模型。在这项工作中,我们结合表面增强红外吸收(SEIRA)光谱研究了肽类抗菌肽(ALM)在电极上的固定双层脂质膜中的掺入。这种方法可以原位监测 ALM 的自发和电位诱导的离子通道形成。复杂的掺入动力学揭示了一种多步骤的机制,表明在穿透膜并采用跨膜构象之前存在肽-肽相互作用。基于密度泛函理论计算确定的骨架酰胺 I 和 II 红外吸收的各向异性,我们采用数学模型来评估 SEIRA 光谱监测到的 ALM 重取向。结果表明,ALM 在界面吸附和跨膜掺入状态下分别采用约 69°-78°和 21°的倾斜角度。这些取向可以通过与脂质头基的偶极相互作用或施加电势梯度来有效地稳定。所提出的电位控制的机制研究表明,ALM 以单体或平行寡聚物的形式整合到膜中,形成由平行取向的螺旋组成的离子通道,而反平行寡聚物则被阻止进入。