Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, Room 226, Philadelphia, PA, 19104, USA.
Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Eur J Neurosci. 2019 Mar;49(5):623-636. doi: 10.1111/ejn.13829. Epub 2018 Feb 22.
The dorsomedial striatum, a key site of reward-sensitive motor output, receives extensive afferent input from cortex, thalamus and midbrain. These projections are integrated by striatal microcircuits containing both spiny projection neurons and local circuit interneurons. To explore target cell specificity of these projections, we compared inputs onto D1-dopamine receptor-positive spiny neurons, parvalbumin-positive fast-spiking interneurons and somatostatin-positive low-threshold-spiking interneurons, using cell type-specific rabies virus tracing and optogenetic-mediated projection neuron recruitment in mice. While the relative proportion of retrogradely labelled projection neurons was similar between target cell types, the convergence of inputs was systematically higher for projections onto fast-spiking interneurons. Rabies virus is frequently used to assess cell-specific anatomical connectivity but it is unclear how this correlates to synaptic connectivity and efficacy. To test this, we compared tracing data with target cell-specific measures of synaptic efficacy for anterior cingulate cortex and parafascicular thalamic projections using novel quantitative optogenetic measures. We found that target-specific patterns of convergence were extensively modified according to region of projection neuron origin and postsynaptic cell type. Furthermore, we observed significant divergence between cell type-specific anatomical connectivity and measures of excitatory synaptic strength, particularly for low-threshold-spiking interneurons. Taken together, this suggests a basic uniform connectivity map for striatal afferent inputs upon which presynaptic-postsynaptic interactions impose substantial diversity of physiological connectivity.
背内侧纹状体是奖赏敏感运动输出的关键部位,接收来自皮层、丘脑和中脑的广泛传入输入。这些投射通过包含棘突投射神经元和局部回路中间神经元的纹状体微电路进行整合。为了探索这些投射的靶细胞特异性,我们使用细胞类型特异性狂犬病毒追踪和在小鼠中进行光遗传介导的投射神经元募集,比较了 D1-多巴胺受体阳性棘突神经元、parvalbumin 阳性快速放电中间神经元和 somatostatin 阳性低阈值放电中间神经元上的输入。虽然靶细胞类型之间逆行标记的投射神经元的相对比例相似,但投射到快速放电中间神经元的输入的汇聚程度更高。狂犬病毒常用于评估细胞特异性解剖连接,但尚不清楚这与突触连接和效率有何关联。为了检验这一点,我们使用新型定量光遗传学测量方法,将追踪数据与前扣带皮层和旁束核丘脑投射的靶细胞特异性突触效率测量进行了比较。我们发现,根据投射神经元起源和突触后细胞类型的区域,汇聚的靶特异性模式得到了广泛的修饰。此外,我们观察到细胞类型特异性解剖连接和兴奋性突触强度测量之间存在显著的分歧,特别是对于低阈值放电中间神经元。总之,这表明纹状体传入输入具有基本的统一连接图,其上的突触前-突触后相互作用施加了生理连接的显著多样性。