Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland.
Malaria Research Institute, Johns Hopkins School of Public Health, Baltimore, Maryland.
Am J Trop Med Hyg. 2024 Sep 10;111(5):967-976. doi: 10.4269/ajtmh.24-0135. Print 2024 Nov 6.
Rodent malaria models serve as important preclinical antimalarial and vaccine testing tools. Evaluating treatment outcomes in these models often requires manually counting parasite-infected red blood cells (iRBCs), a time-consuming process, which can be inconsistent between individuals and laboratories. We have developed an easy-to-use machine learning (ML)-based software, Malaria Screener R, to expedite and standardize such studies by automating the counting of Plasmodium iRBCs in rodents. This software can process Giemsa-stained blood smear images captured by any camera-equipped microscope. It features an intuitive graphical user interface that facilitates image processing and visualization of the results. The software has been developed as a desktop application that processes images on standard Windows and MacOS computers. A previous ML model created by the authors designed to count Plasmodium falciparum-infected human RBCs did not perform well counting Plasmodium-infected mouse RBCs. We leveraged that model by loading the pretrained weights and training the algorithm with newly collected data to target Plasmodium yoelii- and Plasmodium berghei-infected mouse RBCs. This new model reliably measured both P. yoelii and P. berghei parasitemia (R2 = 0.9916). Additional rounds of training data to incorporate variances due to length of Giemsa staining and type of microscopes, etc., have produced a generalizable model, meeting WHO competency level 1 for the subcategory of parasite counting using independent microscopes. Reliable, automated analyses of blood-stage parasitemia will facilitate rapid and consistent evaluation of novel vaccines and antimalarials across laboratories in an easily accessible in vivo malaria model.
啮齿动物疟疾模型是重要的临床前抗疟和疫苗测试工具。评估这些模型中的治疗结果通常需要手动计数寄生虫感染的红细胞(iRBC),这是一个耗时的过程,不同个体和实验室之间的结果可能不一致。我们开发了一种易于使用的基于机器学习(ML)的软件 Malaria Screener R,通过自动化啮齿动物中疟原虫 iRBC 的计数来加速和标准化此类研究。该软件可以处理任何配备摄像头的显微镜拍摄的吉姆萨染色血涂片图像。它具有直观的图形用户界面,便于图像处理和结果可视化。该软件已开发为在标准 Windows 和 MacOS 计算机上处理图像的桌面应用程序。作者之前创建的用于计数恶性疟原虫感染的人 RBC 的 ML 模型在计数感染的鼠 RBC 方面表现不佳。我们利用该模型,加载预训练的权重并用新收集的数据训练算法,以针对感染疟原虫的鼠 RBC。该新模型可靠地测量了疟原虫和疟原虫感染的红细胞(R2 = 0.9916)。通过增加训练数据来纳入吉姆萨染色长度和显微镜类型等差异,产生了一个可推广的模型,达到了使用独立显微镜进行寄生虫计数的类别中的世界卫生组织 1 级能力标准。可靠的、自动化的血液阶段寄生虫计数分析将促进在易于访问的体内疟疾模型中,在各个实验室中快速和一致地评估新型疫苗和抗疟药。